|
科学通报 1966
非线性定常系统极限环的存在与唯一性Abstract: 1.设a,l、m、n、b为实数,对于非线性定常系统 dx/dt=ax-y+lx~2+mxy+ny~2 dy/dt=x+bxy (1) 得到定理1 若a=0,且l-b=0或m~2-4n(n+b)≥0,则系统(1)在整个平面上不可能有极限环。定理2 当真a≠0,但l=0或l-b=0时,系统(1)可分别在两奇点O(0,0)、N(0,1/n)外围出现极限环,但不能同时存在,如存在必唯一。定理3 若n=0或n+b=0成立,则当a≠0时,系统(1)可存在包含原点O的极限环,但最多一个。
|