|
重庆邮电大学学报(自然科学版) 2008
A new NN-SVM algorithm based on gird
|
Abstract:
支持向量机(SVM)算法往往由于分类面过分复杂或过学习而导致其泛化能力降低,现有的最近邻(NNSVM)或K近邻(KNNSVM)方法解决了这类样本问题,但算法时间复杂度高,处理海量样本的能力有限。在NNSVM算法的基础上引入了网格概念,提出了GNNSVM算法,该算法先对空间进行分块,然后在空间块内计算样本距离,找出最近邻,并结合分块序列最小优化算法(SMO)进行了算法实现。实验表明,该方法降低了计算复杂度,它在保持分类精度的同时,提高了训练和分类的速度,并具有较强的泛化能力,从而提高了原NNSVM算法的海量数据处理能力。