|
计算机应用 2007
Feature selection method based on Fisher criterion and feature clustering
|
Abstract:
特征选择是机器学习和模式识别等领域的重要问题之一。针对高维数据,提出了一种基于Fisher准则和特征聚类的特征选择方法。首先基于Fisher准则,预选出鉴别性能较强的特征子集,然后在预选所得到的特征子集上对特征进行分层聚类,从而最终达到去除不相关和冗余特征的目的。实验结果表明该方法是一种有效的特征选择方法。