全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recommendation system based on Web usage mining for personalized E-learning
基于Web使用挖掘的个性化学习推荐系统

Keywords: Multi-Agent System(MAS),personalization,recommendation system,Web usage mining,Web Services
多Agent系统
,个性化,推荐系统,Web使用挖掘,Web服务,使用挖掘,个性化,学习,推荐系统,personalized,Web,usage,mining,based,system,运行性能,显示,实时性能分析,系统聚类算法,推荐算法,使用策略,资源信息,基于用户,动态生成,系统模型,智能,分布式

Full-Text   Cite this paper   Add to My Lib

Abstract:

To solve the problems of current E-learning recommendation systems by adopting multi-agent system(MAS),a new distributed intelligent recommendation system based on Web usage mining(WUM) was put forward integrating MAS with Web services.It can help learners find resource requested by dynamically generating personal link pages based on the user identification.By adopting least recently used(LRU) policy,the recommendation algorithm of the system was proposed including the global implementing algorithm,clustering algorithm,and suggestion algorithm.Real-time application and experiments show that it is feasible and effective.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133