全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using SVM-based LLSI for text classification
使用基于SVM的局部潜在语义索引进行文本分类

Keywords: text classification,Latent Semantic Indexing (LSI),Support Vector Machine (SVM),local region
文本分类
,潜在语义索引,支持向量机,局部区域,使用,局部,潜在语义索引,文本分类,结果,实验,区域,支持向量机,改进,分类信息,效果,方法,问题,多词,一词多义,程度,语义结构,矩阵,文档,原始词

Full-Text   Cite this paper   Add to My Lib

Abstract:

Latent Semantic Indexing (LSI) uses Singular Value Decomposition (SVD) to obtain latent semantic structure of original term-document matrix, and problems of polysemy and synonymy can be dealt with to some extent. However, the present available methods of applying LSI to text classification are not satisfying, since they do not take full account of classification information. To solve the problem, an improved Local LSI (LLSI) method was proposed, using Support Vector Machine (SVM) to produce the local region. Experimental results suggest that the proposed method is effective.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133