Eremosparton songoricum (Litv.) Vass. ( E. songoricum) is a rare and extremely drought-tolerant desert plant that holds promise as a model organism for the identification of genes associated with water deficit stress. Here, we cloned and evaluated the expression of eight candidate reference genes using quantitative real-time reverse transcriptase polymerase chain reactions. The expression of these candidate reference genes was analyzed in a diverse set of 20 samples including various E. songoricum plant tissues exposed to multiple environmental stresses. GeNorm analysis indicated that expression stability varied between the reference genes in the different experimental conditions, but the two most stable reference genes were sufficient for normalization in most conditions. EsEF and Esα-TUB were sufficient for various stress conditions, EsEF and EsACT were suitable for samples of differing germination stages, and EsGAPDHand Es UBQ were most stable across multiple adult tissue samples. The Es18S gene was unsuitable as a reference gene in our analysis. In addition, the expression level of the drought-stress related transcription factor EsDREB2 verified the utility of E. songoricum reference genes and indicated that no single gene was adequate for normalization on its own. This is the first systematic report on the selection of reference genes in E. songoricum, and these data will facilitate future work on gene expression in this species.
References
[1]
Zhang, D.Y.; Ma, W.B.; Shi, X.; Wang, J.C.; Wang, X.Y. Distribution and bio-ecological characteristics of Eremosparton songoricum, a rare plant in Gurbantunggut desert. J. Desert Res 2008, 28, 430–436.
[2]
Yin, L.K.; Tan, L.X.; Wang, B. Rare Endangered Endemic High Plants in Xinjiang of China; Xinjiang Science and Technology Press: Urumqi, China, 2006; pp. 074–075.
[3]
Zhang, L.Y.; Hai, Y. Plant communities excluded in the book of “The vegetation and its utilization in Xinjiang”. Arid Land Geogr 2002, 25, 84–89.
[4]
Xu, Z.S.; Chen, M.; Li, L.C.; Ma, Y.Z. Functions and application of the AP2/ERF transcription factor family in crop improvement. J. Integr. Plant Biol 2011, 53, 570–585, doi:10.1111/j.1744-7909.2011.01062.x. 21676172
[5]
Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 2006, 25, 1263–1274, doi:10.1007/s00299-006-0204-8. 16858552
[6]
Chen, M.; Wang, Q.Y.; Cheng, X.G.; Xu, Z.S.; Li, L.C.; Ye, X.G.; Xia, L.Q.; Ma, Y.Z. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun 2007, 353, 299–305, doi:10.1016/j.bbrc.2006.12.027. 17178106
[7]
Liu, N.; Zhong, N.Q.; Wang, G.L.; Li, L.J.; Liu, X.L.; He, Y.K.; Xia, G.X. Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 2007, 226, 827–838, doi:10.1007/s00425-007-0529-8. 17541631
[8]
Tang, M.J.; Sun, J.W.; Liu, Y.; Chen, F.; Shen, S.H. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol. Biol 2007, 63, 419–428, doi:10.1007/s11103-006-9098-7. 17103014
[9]
Peng, X.J.; Ma, X.Y.; Fan, W.H.; Su, M.; Cheng, L.Q.; Alam, I.; Lee, B.H.; Qi, Q.M.; Shen, S.H.; Liu, G.S. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 2011, 30, 1493–1502, doi:10.1007/s00299-011-1058-2. 21509473
Artico, S.; Nardeli, S.M.; Brilhante, O.; Grossi-de-Sa, M.F.; Alves-Ferreira, M. Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 2010, 10, doi:10.1186/1471-2229-10-49.
[12]
Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol 2000, 25, 169–193, doi:10.1677/jme.0.0250169. 11013345
[13]
Nitsche, A.; Radonic, A.; Thulke, S.; Mackay, I.M.; Landt, O.; Siegert, W. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun 2004, 313, 856–862, doi:10.1016/j.bbrc.2003.11.177. 14706621
[14]
Schmidt, G.W.; Delaney, S.K. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Mol. Genet. Genomics 2010, 283, 233–241, doi:10.1007/s00438-010-0511-1. 20098998
[15]
Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3, research0034:1–research0034:11.
[16]
Hu, R.B.; Fan, C.M.; Fu, Y.F. Reference gene selection in plant real-time quantitative reverse transcription PCR (in chinese). J. Agric. Sci. Tech 2009, 11, 30–36.
[17]
Maroufi, A.; van Bockstaele, E.; de Loose, M. Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol. Biol 2010, 11, 15, doi:10.1186/1471-2199-11-15. 20156357
[18]
Silveira, E.D.; Alves-Ferreira, M.; Guimaraes, L.A.; da Silva, F.R.; Carneiro, V.T. Selection of reference genes for quantitative real-time PCR expression studies in the apomictic and sexual grass Brachiaria brizantha. BMC Plant Biol 2009, 9, doi:10.1186/1471-2229-9-84.
[19]
Exposito-Rodriguez, M.; Borges, A.A.; Borges-Perez, A.; Perez, J.A. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 2008, 8, doi:10.1186/1471-2229-8-131.
[20]
Lovdal, T.; Lillo, C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal. Biochem 2009, 387, 238–242, doi:10.1016/j.ab.2009.01.024. 19454243
[21]
Jian, B.; Liu, B.; Bi, Y.R.; Hou, W.S.; Wu, C.X.; Han, T.F. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol. Biol 2008, 9, doi:10.1186/1471-2199-9-59.
[22]
Boava, L.P.; Laia, M.L.; Jacob, T.R.; Dabbas, K.M.; Goncalves, J.F.; Ferro, J.A.; Ferro, M.I.; Furtado, E.L. Selection of endogenous genes for gene expression studies in Eucalyptus under biotic (Puccinia psidii) and abiotic (acibenzolar-S-methyl) stresses using RT-qPCR. BMC Res. Notes 2010, 3, doi:10.1186/1756-0500-3-43.
[23]
Weyrich, A.; Axtner, J.; Sommer, S. Selection and validation of reference genes for real-time RT-PCR studies in the non-model species Delomys sublineatus, an endemic Brazilian rodent. Biochem. Biophys. Res. Commun 2010, 392, 145–149, doi:10.1016/j.bbrc.2009.12.173. 20059981
[24]
Shen, Y.M.; Li, Y.; Ye, F.; Wang, F.F.; Lu, W.G.; Xie, X. Identification of suitable reference genes for measurement of gene expression in human cervical tissues. Anal. Biochem 2010, 405, 224–229, doi:10.1016/j.ab.2010.06.029. 20599650
[25]
Ponton, F.; Chapuis, M.P.; Pernice, M.; Sword, G.A.; Simpson, S.J. Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J. Insect. Physiol 2011, 57, 840–850, doi:10.1016/j.jinsphys.2011.03.014. 21435341
[26]
Demidenko, N.V.; Logacheva, M.D.; Penin, A.A. Selection and validation of reference genes for quantitative real-Time PCR in Buckwheat (Fagopyrum esculentum) based on transcriptome sequence data. PLoS One 2011, 6, doi:10.1371/journal.pone.0019434.
[27]
Lee, J.M.; Roche, J.R.; Donaghy, D.J.; Thrush, A.; Sathish, P. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.). BMC Mol. Biol 2010, 11, doi:10.1186/1471-2199-11-8.
[28]
Hong, S.Y.; Seo, P.J.; Yang, M.S.; Xiang, F.N.; Park, C.M. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 2008, 8, doi:10.1186/1471-2229-8-112.
[29]
Yan, J.W.; Yuan, F.R.; Long, G.Y.; Qin, L.; Deng, Z.N. Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol. Biol. Rep. 2011, 39, 1831–1838. 21633888
[30]
Wan, H.J.; Zhao, Z.G.; Qian, C.T.; Sui, Y.H.; Malik, A.A.; Chen, J.F. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem 2010, 399, 257–261, doi:10.1016/j.ab.2009.12.008. 20005862
[31]
Tong, Z.G.; Gao, Z.H.; Wang, F.; Zhou, J.; Zhang, Z. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol. Biol 2009, 10, doi:10.1186/1471-2199-10-71.
[32]
Migocka, M.; Papierniak, A. Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol. Breeding 2010, 1–15.
[33]
Carvalho, K.; de Campos, M.K.F.; Pereira, L.F.P.; Vieira, L.G.E. Reference gene selection for real-time quantitative polymerase chain reaction normalization in “Swingle” citrumelo under drought stress. Anal. Biochem 2010, 402, 197–199, doi:10.1016/j.ab.2010.03.038. 20363209
[34]
Zhong, H.Y.; Chen, J.W.; Li, C.Q.; Chen, L.; Wu, J.Y.; Chen, J.Y.; Lu, W.J.; Li, J.G. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 2011, 30, 641–653, doi:10.1007/s00299-010-0992-8. 21301853
[35]
Chen, L.; Zhong, H.Y.; Kuang, J.F.; Li, J.G.; Lu, W.J.; Chen, J.Y. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta 2011, 234, 377–390, doi:10.1007/s00425-011-1410-3. 21505864
[36]
Gutierrez, N.; Gimenez, M.J.; Palomino, C.; Avila, C.M. Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR. Mol. Breeding 2011, 28, 13–24, doi:10.1007/s11032-010-9456-7.
[37]
Barsalobres-Cavallari, C.F.; Severino, F.E.; Maluf, M.P.; Maia, I.G. Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol. Biol 2009, 10, doi:10.1186/1471-2199-10-1.
[38]
Cruz, F.; Kalaoun, S.; Nobile, P.; Colombo, C.; Almeida, J.; Barros, L.M.G.; Romano, E.; Grossi-de-Sa, M.F.; Vaslin, M.; Alves-Ferreira, M. Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol. Breed 2009, 23, 607–616, doi:10.1007/s11032-009-9259-x.
[39]
Luo, H.L.; Chen, S.M.; Wan, H.J.; Chen, F.D.; Gu, C.S.; Liu, Z.L. Candidate reference genes for gene expression studies in water lily. Anal. Biochem 2010, 404, 100–102, doi:10.1016/j.ab.2010.05.002. 20452325
[40]
Chen, X.; Truksa, M.; Shah, S.; Weselake, R.J. A survey of quantitative real-time polymerase chain reaction internal reference genes for expression studies in Brassica napus. Anal. Biochem 2010, 405, 138–140, doi:10.1016/j.ab.2010.05.032. 20522329
[41]
Yang, Y.F.; Hou, S.; Cui, G.H.; Chen, S.L.; Wei, J.H.; Huang, L.Q. Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol. Biol. Rep 2010, 37, 507–513, doi:10.1007/s11033-009-9703-3. 19680786
[42]
Huis, R.; Hawkins, S.; Neutelings, G. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biol 2010, 10, doi:10.1186/1471-2229-10-71.
[43]
Gonzalez-Verdejo, C.I.; Die, J.V.; Nadal, S.; Jimenez-Marin, A.; Moreno, M.T.; Roman, B. Selection of housekeeping genes for normalization by real-time RT-PCR: Analysis of Or-MYB1 gene expression in Orobanche ramosa development. Anal. Biochem. 2008, 379, 176–181, doi:10.1016/j.ab.2008.05.003. 18503743
[44]
Libault, M.; Thibivilliers, S.; Bilgin, D.D.; Radwan, O.; Benitez, M.; Clough, S.J.; Stacey, G. Identification of four soybean reference genes for gene expression normalization. Plant Genome 2008, 1, doi:10.3835/plantgenome2008.02.0091.
[45]
Kakar, K.; Wandrey, M.; Czechowski, T.; Gaertner, T.; Scheible, W.R.; Stitt, M.; Torres-Jerez, I.; Xiao, Y.; Redman, J.C.; Wu, H.C.; et al. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula. Plant Methods 2008, 4, doi:10.1186/1746-4811-4-18.
[46]
Die, J.V.; Roman, B.; Nadal, S.; Gonzalez-Verdejo, C.I. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 2010, 232, 145–153, doi:10.1007/s00425-010-1158-1. 20379832
[47]
Garg, R.; Sahoo, A.; Tyagi, A.K.; Jain, M. Validation of internal control genes for quantitative gene expression studies in chickpea (Cicer arietinum L.). Biochem. Biophys. Res. Commun 2010, 396, 283–288, doi:10.1016/j.bbrc.2010.04.079. 20399753
[48]
Cordoba, E.M.; Die, J.V.; Gonzalez-Verdejo, C.I.; Nadal, S.; Roman, B. Selection of reference genes in Hedysarum coronarium under various stresses and stages of development. Anal.Biochem 2011, 409, 236–243, doi:10.1016/j.ab.2010.10.031. 21036135
[49]
Li, H.P.; Qin, Y.X.; Xiao, X.; Tang, C. Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. Plant Sci 2011, 181, 132–139, doi:10.1016/j.plantsci.2011.04.014. 21683878
[50]
Lilly, S.T.; Drummond, R.S.M.; Pearson, M.N.; MacDiarmid, R.M. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant Microbe In 2011, 24, 862–862.
[51]
Chen, J.H.; Xia, X.L.; Yin, W.W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem. Biophys. Res. Commun 2009, 378, 483–487, doi:10.1016/j.bbrc.2008.11.071. 19032934
[52]
Ahmad, S.; Ahmad, R.; Ashraf, M.Y.; Ashraf, M.; Waraich, E.A. Sunflower (Helianthus Annuus L.) response to drought stress at germination and seedling growth stages. Pak. J. Bot 2009, 41, 647–654.
[53]
Yang, Y.F.; Wu, J.; Zhu, K.; Liu, L.Q.; Chen, F.D.; Yu, D.Y. Identification and characterization of two chrysanthemum (Dendronthema × moriforlium) DREB genes, belonging to the AP2/EREBP family. Mol Biol. Rep 2009, 36, 71–81, doi:10.1007/s11033-007-9153-8. 17922220
[54]
Luo, Z.Y.; Lu, Q.H.; Liu, S.P.; Chen, X.H.; Luo, J.Q.; Tan, L.J.; Hu, W.X. Screening and identification of novel genes involved in biosynthesis of ginsenoside in Panax ginseng plant. Acta Bioch. Bioph. Sin 2003, 35, 554–560.
[55]
Chang, S.H.; Ying, J.; Zhang, J.J.; Su, J.Y.; Zeng, Y.J.; Tong, Y.P.; Li, B.; Li, Z.S. Expression of a wheat s-like RNAase (WRN1) cDNA during natural- and dark-induced senescence. Acta Bot. Sin 2003, 45, 1071–1075.