Development of Classification Models for Identifying “True” P-glycoprotein (P-gp) Inhibitors Through Inhibition, ATPase Activation and Monolayer Efflux Assays
P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.
References
[1]
Dean, M.; Hamon, Y.; Chimini, G. The human ATP-binding cassette (ABC) transporter superfamily. J. Lipid. Res 2001, 42, 1007–1017.
[2]
Bates, E.S.; Robey, R.; Knutsen, T.; Honjo, Y.; Litman, T.; Dean, M. New ABC transporters in multi-drug resistance. Emerging Ther. Targets 2000, 4, 561–580.
[3]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58.
Glavinas, H.; Krajcsi, P.; Cserepes, J.; Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv. 2004, 1, 27–42.
[6]
Hyde, S.C.; Emsley, P.; Hartshorn, M.J.; Mimmack, M.M.; Gileadi, U.; Pearce, S.R.; Gallagher, M.P.; Gill, D.R.; Hubbard, R.E.; Higgins, C.F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 1990, 346, 362–365.
[7]
Quinton, P.M. Physiological basis of cystic fibrosis: A historical perspective. Physiol. Rev 1999, 79, S3–S22.
[8]
Remaley, A.T.; Rust, S.; Rosier, M.; Knapper, C.; Naudin, L.; Broccardo, C.; Peterson, K.M.; Koch, C.; Arnould, I.; Prades, C.; et al. Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc. Natl. Acad. Sci. USA 1996, 96, 12685–12690.
[9]
Brooks-Wilson, A.; Marcil, M.; Clee, S.M.; Zhang, L.H.; Roomp, K.; van Dam, M.; Yu, L.; Brewer, C.; Collins, J.A.; Molhuizen, H.O.; et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat. Genet 1999, 22, 336–345.
[10]
Rapposelli, S.; Digiacomo, M.; Balsamo, A. P-gp transporter and its role in neurodegenerative diseases. Curr. Top. Med. Chem 2009, 9, 209–217.
[11]
Krishna, R.; Mayer, L.D. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur. J. Pharmacol. Sci 2000, 11, 265–283.
[12]
Polli, J.W.; Wring, S.A.; Humphreys, J.E.; Huang, L.; Morgan, J.B.; Webster, L.O.; Serabjit-Singh, C.S. Rational use of in vitro P-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther 2001, 299, 620–628.
[13]
Colabufo, N.A.; Berardi, F.; Perrone, R.; Rapposelli, S.; Digiacomo, M.; Vanni, M.; Balsamo, A. Synthesis and biological evaluation of (hetero)arylmethyloxy- and arylmethylamine-phenyl derivatives as potent P-glycoprotein modulating agents. J. Med. Chem 2008, 51, 1415–1422.
[14]
Colabufo, N.A.; Berardi, F.; Perrone, R.; Rapposelli, S.; Digiacomo, M.; Balsamo, A. Arylmethyloxyphenyl derivatives: Small molecules displaying P-glycoprotein inhibition. J. Med. Chem. 2006, 49, 6607–6613.
[15]
Colabufo, N.A.; Berardi, F.; Perrone, R.; Rapposelli, S.; Digiacomo, M.; Vanni, M.; Balsamo, A. 2-[(3-Methoxyphenylethyl)phenoxy]-based ABCB1 inhibitors: Effect of different basic side-chains on their biological properties. J. Med. Chem 2008, 51, 7602–7613.
[16]
Berardi, F.; Colabufo, N.A.; Perrone, R.; Balsamo, A.; Rapposelli, S.; Digiacomo, M. 1-phenylalcoy-2-beta-phenylethyl Derivatives as P-glycoprotein (P-gp) Inhibitors Useful in Drug Resistance Events. U.S. Patent Application US0,093,493,9, April 2009.
[17]
OECD Home Page, Available online: http://www.oecd.org/ehs , accessed on 6 June 2012.
[18]
Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res 1997, 14, 568–571.
[19]
Gadhe, C.G.; Madhavan, T.; Kothandan, G.; Cho, S.J. In Silico Quantitative Structure-Activity Relationship Studies on P-gp Modulators of Tetrahydroisoquinoline-Ethyl-Phenylamine Series. BMC Struct. Biol 2011, 11, 5–19.
[20]
Fernandes, J.; Gattas, C.R. Topological Polar Surface Area Defines Substrate Transport by Multidrug Resistance Associated Protein 1 (MRP1/ABCC1). J. Med. Chem 2009, 52, 1214–1218.
[21]
Schwaha, R.; Ecker, G.F. Similarity based descriptors—Useful classification of substrates of the human multidrug transporter P-glycoprotein? QSAR Comb. Sci 2009, 28, 834–839.
[22]
Cabrera, M.A.; González, I.; Fernandez, C.; Navarro, C.; Bermejo, M. A topological substructural approach for the prediction of P-glycoprotein substrates. J. Pharm. Sci 2006, 95, 589–606.
[23]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf 2010, 29, 476–488.
[24]
Yap, C.W. PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem 2010, 32, 1466–1474.
[25]
PubChem Substructure Fingerprint Web Site, Available onlone: ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt , accessed on 6 June 2012.
Coi, A.; Massarelli, I.; Saraceno, M.; Carli, N.; Testai, L.; Calderone, V.; Bianucci, A.M. Quantitative structure-activity relationship models for predicting biological properties, developed by combining structure- and ligand-based approaches: an application to the human Ether-a-go-go Related Gene potassium channel inhibition. Chem. Biol. Drug. Des 2009, 74, 416–433.
[28]
Hall, M.A. Correlation-based Feature Subset Selection for Machine Learning Hamilton. Ph.D. Dissertation, The University of Waikato, Hamilton, New Zealand, April 1999.
[29]
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor 2009, 11, 10–18.
[30]
Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993; pp. 55–77.
[31]
Matthews, B.V. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 1975, 405, 442–451.
[32]
Smeeton, N.C. Early history of the kappa statistic. Biometrics 1985, 41, 795.
[33]
Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett 2006, 27, 861–874.
[34]
Netzeva, T.I.; Worth, A.P.; Aldenberg, T.; Benigni, R.; Cronin, M.T.D.; Gramatica, P.; Jaworska, J.S.; Kahn, S.; Klopman, G.; Marchant, C.A.; et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 2005, 33, 155–173.