There is a widespread awareness that the wealth of preclinical toxicity data that the pharmaceutical industry has generated in recent decades is not exploited as efficiently as it could be. Enhanced data availability for compound comparison (“read-across”), or for data mining to build predictive tools, should lead to a more efficient drug development process and contribute to the reduction of animal use (3Rs principle). In order to achieve these goals, a consortium approach, grouping numbers of relevant partners, is required. The eTOX (“electronic toxicity”) consortium represents such a project and is a public-private partnership within the framework of the European Innovative Medicines Initiative (IMI). The project aims at the development of in silico prediction systems for organ and in vivo toxicity. The backbone of the project will be a database consisting of preclinical toxicity data for drug compounds or candidates extracted from previously unpublished, legacy reports from thirteen European and European operation-based pharmaceutical companies. The database will be enhanced by incorporation of publically available, high quality toxicology data. Seven academic institutes and five small-to-medium size enterprises (SMEs) contribute with their expertise in data gathering, database curation, data mining, chemoinformatics and predictive systems development. The outcome of the project will be a predictive system contributing to early potential hazard identification and risk assessment during the drug development process. The concept and strategy of the eTOX project is described here, together with current achievements and future deliverables.
References
[1]
ICH Topic M 3 (R2): Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals CPMP/ICH/286/95, Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002720.pdf , accessed on 19 September 2011.
[2]
Federsel, H.J. Handing Over the Baton: Connecting Medicinal Chemistry with Process R&D. Drug News Perspect 2008, 21, 193–199.
[3]
Car, B. Enabling Technologies in Reducing Drug Attrition Due to Safety Failures. Int. Drug Disc 2006, 1, 53–56.
[4]
Morelli, J.K.; Buehrle, M.; Pognan, F.; Barone, L.; Fieles, W.; Ciaccio, P.J. Validation of an in vitro screen for phopholipidosis using a high content biology platform. Cell Biol. Toxicol 2006, 22, 15–27.
[5]
Hancox, J.C.; McPate, M.J.; El Harchi, A.; Zhang, Y.H. The hERG potassium channel and hERG screening for drug-induced Torsades de Pointes. Pharmacol. Ther 2008, 119, 118–132.
[6]
Naven, R.T.; Louise-May, S.; Greene, N. The computational prediction of genotoxicity. Expert Opin. Drug Metab. Toxicol 2010, 6, 797–807.
[7]
Mekenyan, O.; Patlewicz, G.; Dimitrova, G.; Kuseva, C.; Todorov, M.; Stoeva, S.; Kotov, S.; Donner, E.M. Use of Genotoxicity Information in the Development of Integrated Testing Strategies (ITS) for Skin Sensitization. Chem. Res. Toxicol 2010, 23, 1519–1540.
[8]
Obiol-Pardo, C.; Gomis-Tena, J.; Sanz, F.; Saiz, J.; Pastor, M. A multiscale simulation system for the prediction of drug-induced cardiotoxicity. J. Chem. Inf. Model 2011, 51, 483–492.
[9]
Benz, R.D. Toxicological and clinical computational analysis and the US FDA/CDER. Expert Opin. Drug Metab. Toxicol 2007, 3, 109–124.
[10]
Gubbels-van Hal, W.M.; Blaauboer, B.J.; Barentsen, H.M.; Hoitink, M.A.; Meerts, I.A.; van der Hoeven, J.C. An alternative approach for the safety evaluation of new and existing chemicals, an exercise in integrated testing. Regul. Toxicol. Pharmacol 2005, 42, 284–295.
[11]
Zhu, H.; Martin, T.M.; Ye, L.; Sedykh, A.; Young, D.M.; Tropsha, A. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure. Chem. Res. Toxicol 2009, 22, 1913–1921.
[12]
Bhhatarai, B.; Gramatica, P. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse. Mol. Divers 2011, 15, 467–476.
[13]
Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique, 1st ed ed.; Methuen: London, UK, 1959.
[14]
The Innovative Medicines Initiative (IMI) Homepage, Available online : http://www.imi.europa.eu , accessed on 19 September 2011.
[15]
The eTOX project website, Available online : http://www.e-TOX.net , accessed on 19 September 2011.
[16]
Kramer, J.A.; Sagartz, J.E.; Morris, D.L. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov 2007, 6, 636–649.
[17]
Richard, A.M.; Yang, C.; Judson, R.S. Toxicity Data Informatics: Supporting a New Paradigm for Toxicity Prediction. Toxicol. Mech. Method 2008, 18, 103–118.
[18]
Hardy, B.; Douglas, N.; Helma, C.; Rautenberg, M.; Jeliazkova, N.; Jeliazkov, V.; Nikolova, I.; Benigni, R.; Tcheremenskaia, O.; Kramer, S.; et al. Collaborative development of predictive toxicology applications. J. Cheminform 2010, 2, 7.
[19]
The OSIRIS Project Homepage, Available online: http://www.osiris-reach.eu , accessed on 20 March 2012.
[20]
Searls, D.B. Data integration: challenges for drug discovery. Nat. Rev. Drug Discov 2005, 4, 45–58.
[21]
Bologa, C.; Allu, T.K.; Olah, M.; Kappler, M.A.; Oprea, T.I. Descriptor collision and confusion: Toward the design of descriptors to mask chemical structures. J. Comput. Aided Mol. Des 2005, 19, 625–635.
[22]
Krallinger, M.; Erhardt, R.A.; Valencia, A. Text-mining approaches in molecular biology and biomedicine. Drug Discov. Today 2005, 10, 439–445.
[23]
Bender, A.; Scheiber, J.; Glick, M.; Davies, J.W.; Azzaoui, K.; Hamon, J.; Urban, L.; Whitebread, S.; Jenkins, J.L. Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off-Target Effects from Chemical Structure. ChemMedChem 2007, 2, 861–873.
[24]
Szakács, G.; Váradi, A.; ?zvegy-Laczka, C.; Sarkadi, B. The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discov. Today 2008, 13, 379–393.
[25]
Funk, C. The role of hepatic transporters in drug elimination. Expert Opin. Drug Metab. Toxicol 2008, 4, 363–379.
[26]
Marchant, C.A.; Briggs, K.A.; Long, A. In silico Tools for Sharing Data and Knowledge on Toxicity and Metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mech. Methods 2008, 18, 177–187.
[27]
Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: Understanding Metabolism in Human Cytochromes from the Perspective of the Chemist. J. Med. Chem 2005, 48, 6970–6979.
[28]
Recent Advances in QSAR Studies. Methods and Applications Series: Challenges and Advances in Computational Chemistry and Physics, 1st ed; Puzyn, T., Leszczynski, J., Cronin, M.T., Eds.; Springer Verlag: Heidelberg, Germany, 2010; Volume 8, pp. 1–414.
[29]
Pitluk, Z.; Khalil, I. Achieving confidence in mechanism for drug discovery and development. Drug Discov. Today 2007, 12, 924–930.
[30]
Derek Nexus, general information, Available online: https://www.lhasalimited.org/derek_nexus/ , accessed on 19 September 2011. authorisation required.
[31]
OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models, November 2004. Available online: http://www.oecd.org/dataoecd/33/37/37849783.pdf , accessed on 19 September 2011.
[32]
ChOX database, a subset of data extracted from ChEMBL, Available online: https://www.ebi.ac.uk/chembl/etox , accessed on 19 September 2011. authorisation required.
[33]
ChEMBL database, Available online: https://www.ebi.ac.uk/chembldb/ , accessed on 19 September 2011.
[34]
Gene Expression Omnibus database, Available online: http://www.ncbi.nlm.nih.gov/geo/ , accessed on 19 September 2011.
[35]
The Open Biological and Biomedical Ontologies: Mouse adult gross anatomy, Available online: http://obofoundry.org/cgi-bin/detail.cgi?id=adult_mouse_anatomy , accessed on 19 September 2011.
[36]
Standard of Exchange of Nonclinical Data (SEND) Homepage, Available online: http://www.cdisc.org/send , accessed on 19 September 2011.
[37]
The Open Biological and Biomedical Ontologies: Cell type, Available online: http://obofoundry.org/cgi-bin/detail.cgi?id=cell , accessed on 19 September 2011.
[38]
The BioPortal: MedDRA, Available online: http://bioportal.bioontology.org/ontologies/42280 , accessed on 19 September 2011.
[39]
The NCBI Taxonomy Homepage, Available online: http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ , accessed 19 September 2011.
Schneider, P.; Korolenko, T.A.; Busch, U. A review of drug induced lysosomal 751 disorders of the liver in man and laboratory animals. Microsc. Res. Tech 1997, 36, 752253–752275.
Boelsterli, U.A.; Lim, P.L. Mitochondrial abnormalities-a link to idiosyncratic drug hepatotoxicity? Toxicol. Appl. Pharmacol 2007, 220, 92–107.
[46]
Giri, S.; Nieber, K.; Bader, A. Hepatotoxicity and hepatic metabolism of available drugs: current problems and possible solutions in preclinical stages. Expert Opin. Drug Metab. Toxicol 2010, 6, 895–917.
[47]
Zollnera, G.; Wagnera, M.; Trauner, M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol. Ther 2010, 126, 228–243.
[48]
Greene, N.; Fisk, L.; Naven, R.T.; Note, R.R.; Patel, M.L.; Pelletier, D.J. Developing structure-activity relationships for the prediction of hepatotoxicity. Chem. Res. Toxicol 2010, 23, 1215–1222.
Garcia-Serna, R.; Mestres, J. Anticipating drug side effects by comparative pharmacology. Expert Opin. Drug Metab. Toxicol 2010, 6, 1253–1263.
[51]
Button, W.G.; Judson, P.N.; Long, A.; Vessey, J.D. Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J. Chem. Inf. Comput. Sci 2003, 43, 1371–1377.
[52]
Judson, P.N.; Marchant, C.A.; Vessey, J.D. Using argumentation for absolute reasoning about the potential toxicity of chemicals. J. Chem. Inf. Comput. Sci 2003, 43, 1364–1370.
[53]
Ellison, C.M.; Madden, J.C.; Judson, P.; Cronin, M.T. Using In silico Tools in a Weight of Evidence Approach to Aid Toxicological Assessment. Mol. Inf 2010, 29, 97–110.
[54]
Mudd, P.N., Jr; Groenendaal, H.; Bush, M.A.; Schmith, V.D. Probabilistic Risk Analysis: Improving Early Drug Development Decision Making. Clin. Pharmacol. Ther 2010, 88, 871–875.