This study explored the effect of glatiramer acetate (GA, 20 mg) on lesion activity using the 1.5 T standard MRI protocol (single dose gadolinium [Gd] and 5-min delay) or optimized 3 T protocol (triple dose of Gd, 20-min delay and application of an off-resonance saturated magnetization transfer pulse). A 15-month, phase IV, open-label, single-blinded, prospective, observational study included 12 patients with relapsing-remitting multiple sclerosis who underwent serial MRI scans (Days ?45, ?20, 0; the minus ign indicates the number of days before GA treatment; and on Days 30, 60, 90, 120, 150, 180, 270 and 360 during GA treatment) on 1.5 T and 3 T protocols. Cumulative number and volume of Gd enhancing (Gd-E) and T2 lesions were calculated. At Days ?45 and 0, there were higher number ( p < 0.01) and volume ( p < 0.05) of Gd-E lesions on 3 T optimized compared to 1.5 T standard protocol. However, at 180 and 360 days of the study, no significant differences in total and cumulative number of new Gd-E and T 2 lesions were found between the two protocols. Compared to pre-treatment period, at Days 180 and 360 a significantly greater decrease in the cumulative number of Gd-E lesions ( p = 0.03 and 0.021, respectively) was found using the 3 T vs. the 1.5 T protocol ( p = NS for both time points). This MRI mechanistic study suggests that GA may exert a greater effect on decreasing lesion activity as measured on 3 T optimized compared to 1.5 T standard protocol.
References
[1]
Bruck, W.; Bitsch, A.; Kolenda, H.; Bruck, Y.; Stiefel, M.; Lassmann, H. Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann. Neurol 1997, 42, 783–793.
[2]
Filippi, M. Enhanced magnetic resonance imaging in multiple sclerosis. Mult. Scler 2000, 6, 320–326.
[3]
Hawkins, C.P.; Munro, P.M.; MacKenzie, F.; Kesselring, J.; Tofts, P.S.; du Boulay, E.P.; Landon, D.N.; McDonald, W.I. Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 1990, 113, 365–378.
[4]
Lucchinetti, C.F.; Bruck, W.; Rodriguez, M.; Lassmann, H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 1996, 6, 259–274.
[5]
Zivadinov, R.; Leist, T.P. Clinical-Magnetic Resonance Imaging Correlations in Multiple Sclerosis. J. Neuroimaging 2005, 15, 10S–21S.
[6]
Cotton, F.; Weiner, H.L.; Jolesz, F.A.; Guttmann, C.R. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology 2003, 60, 640–646.
[7]
di Perri, C.; Dwyer, M.G.; Wack, D.S.; Cox, J.L.; Hashmi, K.; Saluste, E.; Hussein, S.; Schirda, C.; Stosic, M.; Durfee, J.; et al. Signal abnormalities on 1.5 and 3 Tesla brain MRI in multiple sclerosis patients and healthy controls. A morphological and spatial quantitative comparison study. Neuroimage 2009, 47, 1352–1362.
Sicotte, N.L.; Voskuhl, R.R.; Bouvier, S.; Klutch, R.; Cohen, M.S.; Mazziotta, J.C. Comparison of multiple sclerosis lesions at 1.5 and 3.0 Tesla. Invest. Radiol 2003, 38, 423–427.
[10]
Yousry, I.; Filippi, M.; Walther, E.; Gasperini, C.; Capra, R.; Yousry, T.A. Serial gadolinium-DTPA of spinal cord MRI in multiple sclerosis: triple vs. single dose. Magn. Reson. Imaging 2000, 18, 1183–1186.
[11]
van Waesberghe, J.H.; Castelijns, J.A.; Roser, W.; Silver, N.; Yousry, T.; Lycklama, à; Nijeholt, G.J.; Ader, H.J.; Uitdehaag, B.M.; Radue, E.W.; Polman, C.H.; et al. Single-dose gadolinium with magnetization transfer versus triple-dose gadolinium in the MR detection of multiple sclerosis lesions. Amer. J. Neuroradiol 1997, 18, 1279–1285.
[12]
Filippi, M.; Rovaris, M.; Gasperini, C.; Capra, R.; Bastianello, S.; Kuhne, I.; Yousry, T.A. A preliminary study comparing the sensitivity of serial monthly enhanced MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in primary progressive multiple sclerosis. J. Neuroimaging 1998, 8, 88–93.
[13]
Rovaris, M.; Mastronardo, G.; Prandini, F.; Bastianello, S.; Comi, G.; Filippi, M. Short-term evolution of new multiple sclerosis lesions enhancing on standard and triple dose gadolinium-enhanced brain MRI scans. J. Neurol. Sci 1999, 164, 148–152.
[14]
Wattjes, M.P.; Harzheim, M.; Kuhl, C.K.; Gieseke, J.; Schmidt, S.; Klotz, L.; Klockgether, T.; Schild, H.H.; Lutterbey, G.G. Does high-field MR imaging have an influence on the classification of patients with clinically isolated syndromes according to current diagnostic mr imaging criteria for multiple sclerosis? Am. J. Neuroradiol 2006, 27, 1794–1798.
[15]
Stone, L.A.; Frank, J.A.; Albert, P.S.; Bash, C.N.; Calabresi, P.A.; Maloni, H.; McFarland, H.F. Characterization of MRI response to treatment with interferon β-1b: Contrast-enhancing MRI lesion frequency as a primary outcome measure. Neurology 1997, 49, 862–869.
[16]
Filippi, M.; Rovaris, M.; Capra, R.; Gasperini, C.; Prandini, F.; Martinelli, V.; Horsfield, M.A.; Bastianello, S.; Sormani, M.P.; Pozzilli, C.; et al. Interferon-β treatment for multiple sclerosis has a graduated effect on MRI enhancing lesions according to their size and pathology. J. Neurol. Neurosurg. Psychiat 1999, 67, 386–389.
[17]
Rovaris, M.; Capra, R.; Martinelli, V.; Gasperini, C.; Prandini, F.; Pozzilli, C.; Comi, G.; Filippi, M. Cumulative effect of a weekly low dose of interferon β1a on standard and triple dose contrast-enhanced MRI from multiple sclerosis patients. J. Neurol. Sci 1999, 171, 130–134.
[18]
Yong, V.W. Differential mechanisms of action of interferon-beta and glatiramer aetate in MS. Neurology 2002, 59, 802–808.
[19]
Rovaris, M.; Codella, M.; Moiola, L.; Ghezzi, A.; Zaffaroni, M.; Mancardi, G.; Capello, E.; Sardanelli, F.; Comi, G.; Filippi, M. Effect of glatiramer acetate on MS lesions enhancing at different gadolinium doses. Neurology 2002, 59, 1429–1432.
[20]
Cadavid, D.; Wolansky, L.J.; Skurnick, J.; Lincoln, J.; Cheriyan, J.; Szczepanowski, K.; Kamin, S.S.; Pachner, A.R.; Halper, J.; Cook, S.D. Efficacy of treatment of MS with IFNβ-1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology 2009, 72, 1976–1983.
[21]
Mikol, D.D.; Barkhof, F.; Chang, P.; Coyle, P.K.; Jeffery, D.R.; Schwid, S.R.; Stubinski, B.; Uitdehaag, B.M. Comparison of subcutaneous interferon β-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs. Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008, 7, 903–914.
[22]
O’Connor, P.; Filippi, M.; Arnason, B.; Comi, G.; Cook, S.; Goodin, D.; Hartung, H.P.; Jeffery, D.; Kappos, L.; Boateng, F.; et al. 250 microg or 500 microg interferon β-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: A prospective, randomised, multicentre study. Lancet Neurol 2009, 8, 889–897.
[23]
Zivadinov, R. Advanced magnetic resonance imaging metrics: Implications for multiple sclerosis clinical trials. Meth. Find. Exp. Clin. Pharmacol 2009, 31, 29–40.
[24]
Zivadinov, R.; Stosic, M.; Cox, J.; Ramasamy, D.; Dwyer, M. The place of conventional MRI and newly emerging MRI techniques in monitoring different aspects of treatment outcome. J. Neurology 2008, 255, 61–74.
[25]
Khan, O.; Shen, Y.; Caon, C.; Bao, F.; Ching, W.; Reznar, M.; Buccheister, A.; Hu, J.; Latif, Z.; Tselis, A.; et al. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult. Scler 2005, 11, 646–651.
[26]
Zivadinov, R.; Hussein, S.; Stosic, M.; Durfee, J.; Cox, J.L.; Cookfair, D.L.; Hashmi, K.; Abdelrahman, N.; Garg, N.; Dwyer, M.G.; et al. Glatiramer acetate recovers microscopic tissue damage in patients with multiple sclerosis. A case-control diffusion imaging study. Pathophysiology 2011, 18, 61–68.
[27]
Racke, M.K.; Lovett-Racke, A.E.; Karandikar, N.J. The mechanism of action of glatiramer acetate treatment in multiple sclerosis. Neurology 2010, 74, S25–S30.
[28]
Dhib-Jalbut, S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002, 58, S3–S9.
[29]
McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol 2001, 50, 121–127.
[30]
Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452.
[31]
Zivadinov, R.; Rudick, R.A.; de Masi, R.; Nasuelli, D.; Ukmar, M.; Pozzi-Mucelli, R.S.; Grop, A.; Cazzato, G.; Zorzon, M. Effects of IV methylprednisolone on brain atrophy in relapsing-remitting MS. Neurology 2001, 57, 1239–1247.
[32]
Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841.
[33]
Barkhof, F.; Filippi, M.; van Waesberghe, J.H.; Molyneux, P.; Rovaris, M.; Lycklama a Nijeholt, G.; Tubridy, N.; Miller, D.H.; Yousry, T.A.; Radue, E.W.; et al. Improving interobserver variation in reporting gadolinium-enhanced MRI lesions in multiple sclerosis. Neurology 1997, 49, 1682–1688.
[34]
Zivadinov, R.; Bagnato, F.; Nasuelli, D.; Bastianello, S.; Bratina, A.; Locatelli, L.; Watts, K.; Finamore, L.; Grop, A.; Dwyer, M.; et al. Short-term brain atrophy changes in relapsing-remitting multiple sclerosis. J. Neurol. Sci 2004, 223, 185–193.