全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles

DOI: 10.3390/ijms13055645

Keywords: Pinus nigra, genetic diversity, populations, ISSR

Full-Text   Cite this paper   Add to My Lib

Abstract:

Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031?to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation ( Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

References

[1]  Bogunic, F.; Muratovic, E.; Ballian, D.; Siljak-Yakovlev, S.; Brown, S. Genome size stability among five subspecies of Pinus nigra Arnold s.l. Environ. Exp. Bot 2007, 59, 354–360.
[2]  Kerr, G. Natural regeneration of corsican pine (Pinus nigra subsp. laricio) in Great Britain. Forestry 2000, 73, 479–487.
[3]  Lucas-Borja, M.E.; Fonseca, T.; Parresol, B.R.; Silva-Santos, P.; García-Morote, F.A.; Tíscar-Oliver, P.A. Modelling Spanish black pine seedling emergence: Establishing management strategies for endangered forest areas. For. Ecol. Manag 2011, 262, 195–202.
[4]  Tíscar, P.A. Condicionantes y limitaciones de la regeneración natural en un pinar oromediterráneo de Pinus nigra subsp. salzmannii. Investig. Agrar. Sist. Recur. For 2003, 12, 55–64.
[5]  Gernandt, D.S.; Magallón, S.; López, G.G.; Flores, O.Z.; Willyard, A.; Liston, A. Use of simultaneous analyses to guide fossil-based calibrations of pinaceae phylogeny. Int. J. Plant Sci 2008, 169, 1086–1099.
[6]  Naydenov, K.D.; Tremblay, F.M.; Fenton, N.J.; Alexandrov, A. Structure of Pinus nigra Arn. populations in Bulgaria revealed by chloroplast microsatellites and terpenes analysis: Provenance tests. Biochem. Syst. Ecol 2006, 34, 562–574.
[7]  Afzal-Rafii, Z.; Dodd, R.S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol 2007, 16, 723–736.
[8]  Littell, J.S.; Oneil, E.E.; McKenzie, D.; Hicke, J.A.; Lutz, J.A.; Norheim, R.A.; Elsner, M.M. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Clim. Change 2011, 102, 129–158.
[9]  Oleksyn, J.; Tjoelker, M.G.; Reich, P.B. Adaptation to changing environment in Scots pine populations across a latitudinal gradient. Silva Fenn 1998, 32, 129–140.
[10]  Aitken, S.N.; Yeaman, S.; Holliday, J.A.; Wang, T.; Curtis-McLane, S. Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evol. Appl 2008, 1, 95–111.
[11]  Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst 2008, 9, 137–152.
[12]  Chezhian, P.; Yasodha, R.; Ghosh, M. Genetic diversity analysis in a seed orchard of Eucalyptus tereticornis. New For 2010, 40, 85–99.
[13]  Naik, D.; Singh, D.; Vartak, V.; Paranjpe, S.; Bhargava, S. Assessment of morphological and genetic diversity in Gmelina arborea Roxb. New For 2009, 38, 99–115.
[14]  López-Aljorna, A.; Bueno, M.?.; Aguinagalde, I.; Martín, J.P. Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers. Ann. For. Sci 2007, 64, 773–779.
[15]  Feyissa, T.; Nybom, H.; Bartish, I.V.; Welander, M. Analysis of genetic diversity in the endangered tropical tree species Hagenia abyssinica using ISSR markers. Genet. Resour. Crop Evol 2007, 54, 947–958.
[16]  Angelone, S.; Hilfiker, K.; Holderegger, R.; Bergamini, A.; Hoebee, S.E. Regional population dynamics define the local genetic structure in Sorbus torminalis. Mol. Ecol 2007, 16, 1291–1301.
[17]  ?engel, B.; Tayan?, Y.; Kandemir, G.; Velioglu, E.; Alan, M.; Kaya, Z. Magnitude and efficiency of genetic diversity captured from seed stands of Pinus nigra (Arnold) subsp. pallasiana in established seed orchards and plantations. New For 2011, doi:10.1007/s11056-011-9282-8.
[18]  Wang, M.B.; Hao, Z.Z. Rangewide genetic diversity in natural populations of Chinese pine (Pinus tabulaeformis). Biochem. Genet 2010, 48, 590–602.
[19]  Feng, F.J.; Han, S.J.; Wang, H.M. Genetic diversity and genetic differentiation of natural Pinus koraiensis populations. J. For. Res 2006, 17, 21–24.
[20]  Yang, C.P.; Wei, L.; Jiang, J.; Liu, G.F.; Zhao, G.Y. Analysis of genetic diversity for nineteen populations of Pinus sibirica Du Tour with technique of ISSR. J. Northeast For. Univ 2005, 33, 1–3.
[21]  Liu, G.F.; Dong, J.X.; Jiang, Y.; Lu, Y.F.; Jiang, J.; Zhao, G.Y. Analysis of genetic relationship in 12 species of Section Strobus with ISSR markers. J. For. Res 2005, 16, 213–215.
[22]  Labra, M.; Grassi, F.; Sgorbati, S.; Ferrari, C. Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris) from the Alps to the Apennines. Flora 2006, 201, 468–476.
[23]  Zhang, Z.Y.; Chen, Y.Y.; Li, D.Z. Detection of low genetic variation in a critically endangered Chinese pine, Pinus squamata, using RAPD and ISSR markers. Biochem. Genet 2005, 43, 239–249.
[24]  Tiscar-oliver, P.A.; Lucas-Borja, M.E.; Candel-Perez, D. Vreal_IUFRO changes in the structure and composition of two Pinus nigra subsp. salzmannii forest over a century of different silvicultural treatments. For. Syst 2011, 20, 525–535.
[25]  Nei, M. Analysis of gene diversity subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323.
[26]  Rodríguez-Sánchez, F.; Pérez-Barrales, R.; Ojeda, F.; Vargas, P.; Arroy, J. The strait of Gibraltar as a melting pot for plant biodiversity. Quat. Sci. Rev 2008, 27, 2100–2117.
[27]  Lonergan, L.; White, N. Origin of the Betic-Rif mountain belt. Tectonics 1997, 16, 504–522.
[28]  Duggen, S.; Hoernle, K.; van den Bogaard, P.; Rüpke, L.; Morgan, J. Deep roots of the Messinian salinity crisis. Nature 2003, 422, 602–606.
[29]  Krijgsman, W.; Hilgen, F.; Raffi, I.; Sierro, F.; Wilson, D. Chronology, causes and progression of the Messinian salinity crisis. Nature 1999, 400, 652–655.
[30]  Hsü, K.; Montadert, L.; Bernoulli, D.; Cita, M.; Erickson, A.; Garrison, R.; Kidd, R.; Melieres, F.; Müller, C.; Wright, R. History of the Mediterranean salinity crisis. Nature 1977, 267, 399–403.
[31]  Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure from multilocus genotype data. Genetics 2000, 155, 945–959.
[32]  Hamrick, J.; Godt, M. Allozyme Diversity in Plant Species. In Differentiation Patterns in Higher Plants; Urbanski, K., Ed.; Academic Press: New York NY, USA, 1989; pp. 53–67.
[33]  Aguirre-Planter, E.; Furnier, G.R.; Eguiarte, L.E. Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from southern Mexico and Guatemala. Am. J. Bot 2000, 87, 362–371.
[34]  Ingvarsson, P.R.K. Nucleotide polymorphism and linkage disequilibrium within and among natural populations of European Aspen (Populus tremula L., Salicaceae). Genetics 2005, 169, 945–953.
[35]  de Beaulieu, J.L.; Miras, Y.; Andrieu-Ponel, V.; Guiter, F. Vegetation dynamics in north-western Mediterranean regions: Instability of the Mediterranean bioclimate. Plant Biosyst 2005, 139, 114–126.
[36]  Martrat, B.; Grimalt, J.O.; Shackleton, N.J.; de Abreu, L.; Hutterli, M.A.; Stocker, T.F. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin. Science 2007, 317, 502–507.
[37]  Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr 2009, 36, 1333–1345.
[38]  Doyle, J.; Doyle, J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull 1987, 19, 11–15.
[39]  , version 1.32; the user-friendly shareware for population genetic analysis; Molecular Biology and Biotechnology Center, University of Alberta: Edmonton, Canada, 1997. Available online: http://www.ualberta.ca/~fyeh , accessed on 23 November 2011.
[40]  Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295.
[41]  Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27, 209–220.
[42]  Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959.
[43]  Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour 2012, 4, 359–361.
[44]  Evanno, G.; Reganut, E.; Goudet, J. Detecting the number of clusters of individuals using STRUCTURE: A simulation study. Mol. Ecol 2005, 14, 2611–2620.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133