全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

DOI: 10.3390/ijms13045278

Keywords: citrate gel, praseodymium oxide, varistors, zinc oxide

Full-Text   Cite this paper   Add to My Lib

Abstract:

High demands on low-voltage electronics have increased the need for zinc oxide (ZnO) varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr 6O 11) based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr 6O 11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr 6O 11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr 6O 11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

References

[1]  Levinson, L.M.; Philipp, H.R. Zinc oxide varistor—A review. J. Am. Ceram. Soc. Bull 1986, 65, 639–646.
[2]  Gupta, T.K. Application of zinc oxide varistor. J. Am. Ceram. Soc 1990, 73, 1817–1840.
[3]  Pan, W.H.; Kuo, S.T.; Tuan, W.H.; Chen, H.R. Microstructure-property relationships for low voltage varistors. Int. J. Appl. Ceram. Tech 2010, 7, E80–E88.
[4]  Clark, D.R. Varistor ceramics. J. Am. Ceram. Soc 1999, 82, 485–502.
[5]  Olsson, E.; Dunlop, G.L. Characterization of individual interfacial barriers in ZnO varistor material. J. Appl. Phys 1989, 66, 3666–3675.
[6]  Tao, M.; Ai, B.; Dorlanne, O.; Loubiere, A. Different “single grain junctions” within a ZnO varistor. J. Appl. Phys 1987, 61, 1562–1567.
[7]  Toplan, H.O.; Karakas, Y. Grain growth in TiO2-added ZnO-Bi2O3-CoO-MnO ceramics prepared by chemical processing. Ceram. Int 2002, 28, 911–915.
[8]  Hennings, D.F.K.; Hartung, R.; Reijnen, P.J.L. Grain size control in low-voltage varistors. J. Am. Ceram. Soc 1990, 73, 645–648.
[9]  Eda, K.; Inada, M.; Matsuoka, M. Grain growth control in ZnO varistors using seed grains. J. Appl. Phys 1983, 54, 1095–1099.
[10]  Souza, F.L.; Gomes, J.W.; Bueno, P.R.; Cassia-Santos, M.R.; Araujo, A.L.; Leite, E.R.; Longo, E.; Varela, J.A. Effect of addition of ZnO seeds on the electrical properties of ZnO-based varistors. Mater. Chem. Phys 2003, 80, 512–516.
[11]  Kuo, S.T.; Tuan, W.H.; Lao, Y.W.; Wen, C.K.; Chen, H.R.; Lee, H.Y. Investigation into the interactions between Bi2O3-doped ZnO and AgPd electrode. J. Eur. Ceram. Soc 2008, 28, 2557–2562.
[12]  Wang, Q.; Qin, Y.; Xu, G.J.; Chen, L.; Li, Y.; Duan, L.; Li, Z.X.; Li, Y.L.; Cui, P. Low-voltage ZnO varistor fabricated by the solution coating method. Ceram. Int 2008, 34, 1697–1701.
[13]  Li, Y.; Li, G.; Yin, Q. Preparation of ZnO varistors by solution nano-coating technique. Mater. Sci. Eng. B 2006, 130, 264–268.
[14]  Lorenz, A.; Ott, J.; Harrer, M.; Preissner, E.A.; Whitehead, A.H.; Schreiber, M. Modified citrate gel techniques to produce ZnO based varistors (Part 1—Microstructure characterisation). J. Electroceram 2001, 6, 43–54.
[15]  Dhage, S.R.; Pasricha, R.; Ravi, V. Synthesis of ultrafine TiO2 by citrate gel method. Mater. Res. Bull 2003, 36, 1623–1628.
[16]  Ramirez, M.A.; Rubio-Marcos, F.; Fernandez, J.F.; Lengauer, M.; Bueno, P.R.; Longo, E; Varela, J.A. Mechanical properties and dimensional effects of ZnO- and SnO2-based varistors. J. Am. Ceram. Soc 2010, 91, 3105–3108.
[17]  Furtado, J.G.M.; Saléh, L.A.; Serra, E.T.; Oliveira, G.S.G. Microstructural evaluation of rare earth-zinc oxide-based varistor ceramic. Mater. Res 2005, 8, 425–429.
[18]  Zhu, J.F.; Gao, J.Q.; Wang, F.; Chen, P. Influence of Pr6O11 on the characteristics and microstructure of zinc varistors. Key Eng. Mater 2008, 368–372, 500–502.
[19]  Nahm, C.W. Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2O3. J. Eur. Ceram. Soc 2003, 23, 1345–1353.
[20]  Nahm, C.W. The preparation of a ZnO varistor doped with Pr6O11-CoO-Cr2O3-Y2O3-Al2O3 and its properties. Solid State Commun 2009, 149, 795–798.
[21]  Horio, N.; Hiramatsu, M.; Nawata, M.; Imaeda, K.; Torii, T. Preparation of zinc oxide/metal oxide multilayered thin films for low-voltage varistors. Vacuum 1998, 51, 719–722.
[22]  Popa, M.; Kakihana, M. Synthesis and thermoanalytical investigation of an amorphous praseodymium citrate. J. Therm. Anal. Calorim 2001, 65, 281–293.
[23]  Borchert, Y.; Sonstr?m, P.; Wilhelm, M.; Borchert, H.; B?umer, M. Nanostructured praseodymium oxide: Preparation, structure and catalytic properties. J. Phys. Chem. C 2008, 112, 3054–3063.
[24]  Kutty, T.R.N.; Philip, S. Low voltage varistors based on SrTiO3 ceramics. Mater. Sci. Eng. B 1995, 33, 58–66.
[25]  Nakano, Y.; Ichinose, N. Oxygen adsorption and VDR effects in (Sr, Ca)TiO3?x based ceramics. J. Mater. Res 1990, 5, 2910–2921.
[26]  Leite, E.R.; Varela, J.A.; Longo, E. A new interpretation for the degradation phenomena in ZnO varistor. J. Mater. Sci 2005, 27, 5325–5329.
[27]  Li, C.; Wang, J.; Su, W.; Chen, H.; Wang, W.; Zhuang, D. Investigation of electrical properties of SnO2·Co2O3·Sb2O3 varistor system. Phys. B 2001, 307, 1–8.
[28]  Lin, Y.H.; Cai, J.; Li, M.; Nan, C.W.; He, J. Grain boundary behavior in varistor-capacitor TiO2-rich CaCu3Ti4O12 ceramics. J. Appl. Phys 2008, 103, 074111:1–074111:5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133