全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Eighteen Microsatellite Markers in Anemone amurensis (Ranunculaceae) and Cross-Amplification in Congeneric Species

DOI: 10.3390/ijms13044889

Keywords: Anemone, A. amurensis, microsatellite, polyploidy, polymorphism information content

Full-Text   Cite this paper   Add to My Lib

Abstract:

Polyploidy plays an important role in the evolution of plant genomes. To enable the investigation of the polyploidy events within the genus Anemone, we developed eighteen microsatellite markers from the hexaploid species A. amurensis (Ranunculaceae), and tested their transferability in five closely related species. The number of total alleles (N A) for each resulting locus varied from one to eight. The polymorphism information content (PIC) and Nei’s genetic diversity (N GD) for these microsatellites ranged from 0.00 to 0.71 and 0.00 to 0.91, respectively. For each population, the N A was one to seven, and the values of PIC and N GD varied from 0.00 to 0.84 and 0.00 to 0.95, respectively. In addition, most of these microsatellites can be amplified successfully in the congeneric species. These microsatellite primers provide us an opportunity to study the polyploid evolution in the genus Anemone.

References

[1]  Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879.
[2]  Adams, K.L.; Wendel, J.F. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol 2005, 8, 135–141.
[3]  Soltis, D.E.; Albert, V.A.; Leebens-Mack, J.; Bell, C.D.; Paterson, A.H.; Zheng, C.; Sankoff, D.; de Pamphilis, C.W.; Wall, P.K.; Soltis, P.S. Polyploidy and angiosperm diversification. Am. J. Bot 2009, 96, 336–348.
[4]  Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100.
[5]  Gregory, W.C. Phylogenetic and cytological studies in the Ranunculaceae Juss. Trans. Amer. Phil. Soc 1941, 31, 443–521.
[6]  Hoot, S.B.; Jeffrey, A.A.R.; Palmer, D. Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Syst. Bot 1994, 19, 169–200.
[7]  Heimburger, M. Cytotaxonomic studies in the genus Anemone. Can. J. Bot 1959, 37, 587–612.
[8]  Heimburger, M. Comparison of chromosome size in species of anemone and their hybrids. Chromosoma 1962, 13, 328–340.
[9]  Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol 2002, 11, 1–16.
[10]  Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; Zabeau, M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23, 4407–4414.
[11]  Li, L.F.; Pang, D.; Liao, Q.L.; Xiao, H.X. Genomic and EST microsatellite markers for Aquilegia flabellata and cross-amplification in A. oxysepala (Ranunculaceae). Am. J. Bot 2011, 98, e213–e215.
[12]  Botstein, D.; White, D.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet 1980, 32, 314–331.
[13]  Meirmans, P.G.; van Tienderen, P.H. Genotype and genodive: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 2004, 4, 792–794.
[14]  Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol 2003, 12, 1689–1702.
[15]  Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered 1995, 86, 248–249.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133