Polyploidy plays an important role in the evolution of plant genomes. To enable the investigation of the polyploidy events within the genus Anemone, we developed eighteen microsatellite markers from the hexaploid species A. amurensis (Ranunculaceae), and tested their transferability in five closely related species. The number of total alleles (N A) for each resulting locus varied from one to eight. The polymorphism information content (PIC) and Nei’s genetic diversity (N GD) for these microsatellites ranged from 0.00 to 0.71 and 0.00 to 0.91, respectively. For each population, the N A was one to seven, and the values of PIC and N GD varied from 0.00 to 0.84 and 0.00 to 0.95, respectively. In addition, most of these microsatellites can be amplified successfully in the congeneric species. These microsatellite primers provide us an opportunity to study the polyploid evolution in the genus Anemone.
References
[1]
Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879.
[2]
Adams, K.L.; Wendel, J.F. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol 2005, 8, 135–141.
Gregory, W.C. Phylogenetic and cytological studies in the Ranunculaceae Juss. Trans. Amer. Phil. Soc 1941, 31, 443–521.
[6]
Hoot, S.B.; Jeffrey, A.A.R.; Palmer, D. Phylogenetic relationships in Anemone (Ranunculaceae) based on morphology and chloroplast DNA. Syst. Bot 1994, 19, 169–200.
[7]
Heimburger, M. Cytotaxonomic studies in the genus Anemone. Can. J. Bot 1959, 37, 587–612.
[8]
Heimburger, M. Comparison of chromosome size in species of anemone and their hybrids. Chromosoma 1962, 13, 328–340.
[9]
Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol 2002, 11, 1–16.
[10]
Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; Lee, T.; Hornes, M.; Friters, A.; Pot, J.; Paleman, J.; Kuiper, M.; Zabeau, M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 1995, 23, 4407–4414.
[11]
Li, L.F.; Pang, D.; Liao, Q.L.; Xiao, H.X. Genomic and EST microsatellite markers for Aquilegia flabellata and cross-amplification in A. oxysepala (Ranunculaceae). Am. J. Bot 2011, 98, e213–e215.
[12]
Botstein, D.; White, D.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer. J. Hum. Genet 1980, 32, 314–331.
[13]
Meirmans, P.G.; van Tienderen, P.H. Genotype and genodive: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 2004, 4, 792–794.
[14]
Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol 2003, 12, 1689–1702.
[15]
Raymond, M.; Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered 1995, 86, 248–249.