全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan

DOI: 10.3390/ijms13044591

Keywords: small fruits, TPC, TFC, quercetin, kaempferol, p-coumaric acid, fruit ripening, p-hydroxybenzoic acid, HPLC

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5–53.3%, 491–1884 mg gallic acid equivalents (GAE)/100 g DW and 83–327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9–54.0%, 201–2287 mg GAE/100 g DW and 110–1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages.

References

[1]  Iriti, M.; Faoro, F. Grape phytochemicals: A bouquet of old and new nutraceuticals for human health. Med. Hypotheses 2006, 67, 833–838.
[2]  Zhang, Y.; Seeram, N.P.; Lee, R.; Feng, L.; Heber, D. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem 2008, 6, 670–675.
[3]  Cordenunsi, B.R.; Genovese, M.I.; Do-Nascimento, J.R.O.; Aymoto-Hassimotto, N.M.; Santos, R.J.D.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem 2005, 91, 113–121.
[4]  Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W. Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems. PLoS One 2010, 5, 1–14.
[5]  Harborne, J.B.; Baxter, H.; Moss, G.P. Phytochemical dictionary. In Handbook of Bioactive Compounds from Plants, 2nd ed ed.; Taylor and Francis: London, UK, 1999.
[6]  Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr 2000, 130, 2073–2085.
[7]  Lodovici, M.; Guglielmi, F.; Meoni, M.; Dolara, P. Effect of natural phenolic acids on DNA oxidation in vitro. Food Chem. Toxicol 2001, 39, 1205–1210.
[8]  Robbins, R. Phenolic acid in foods: An overview of analytical methodology. J. Agric. Food Chem 2003, 51, 2866–2887.
[9]  Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem 2001, 49, 4977–4982.
[10]  Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; Gonzalez-Aguilar, G.A. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sci. Technol 2004, 37, 687–695.
[11]  Serrano, M.; Guillen, F.; Martinez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem 2005, 53, 2741–2745.
[12]  Patel, P.R.; Rao, T.V.R. Physiological changes in relation to growth and ripening of khirni [Manilkara hexandra (Roxb.) Dubard] fruit. Fruits 2009, 64, 139–146.
[13]  Pineli, L.L.O.; Moretti, C.L.; Santos, M.S.; Campos, A.B.; Brasileiro, A.V.; Cordova, A.C; Chiarello, M.D. Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. J. Food Compos. Anal. 2011, 92, 831–838.
[14]  Yang, J.; Gadi, R.; Thomson, T. Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morinda citrifolia) fruits and leaves at various stages of maturity. Micronesica 2011, 41, 167–176.
[15]  Shahidi, F.; Naczk, M. Phenolic compounds in fruits and vegetables. In Phenolics in Food and Nutraceutical; CRC Press: Tulsa, OK, USA, 2004; pp. 131–156.
[16]  Dinelli, G.; Bonetti, A.; Minelli, M.; Marotti, I.; Catizone, P.; Mazzanti, A. Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem 2006, 90, 105–114.
[17]  Justesen, U.; Knethsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoids intake by use of herbs in traditional danish dishes. Food Chem 2001, 73, 245–250.
[18]  Mabberley, D.J. The Plant-Book. A Portable Dictionary of the Higher Plants; Cambridge University Press: Cambridge, MA, USA, 1987.
[19]  Scott, R.R.; Lei, Z.; Tong, W. Assessments of Commodity and Trade Issues Made by USDA Staff and not Necessarily Statements of Official U.S. Government Policy; GAIN Report Number: 10043; USDA Foreign Agricultural Service: Washington, D.C., USA, 2010.
[20]  Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Quality assessment of strawberries (Fragaria species). J. Agric. Food Chem 2003, 51, 715–721.
[21]  Mitcham, E.J. Strawberry. In The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Crops; Gross, K.C., Wang, C.Y., Saltveit, M.E., Eds.; U.S. Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 2004.
[22]  Spayd, S.E.; Morris, J.R. Physical and chemical characteristics of puree from once-over harvested strawberries. J. Amer. Soc. Hort. Sci 1981, 106, 101–105.
[23]  Terry, L.A.; Joyce, D.C.; Adikaram, N.K.B.; Khambay, B.P.S. Preformed antifungal compounds in strawberry fruit and flower tissues. Postharvest Biol. Technol 2004, 31, 201–212.
[24]  Robards, K.; Antolovich, M. Analytical chemistry of fruit bioflavonoids. A review. Analyst 1997, 122, 11–34.
[25]  Aherne, S.A.; OBbrien, N.M. Dietary flavonols: chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81.
[26]  Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic acid profiles in small berries. J. Agric. Food Chem 2005, 53, 2118–2124.
[27]  Arabshahi-Delouee, S.; Urooj, A. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chem 2007, 102, 1233–1240.
[28]  Ercisli, S.; Orhan, E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 2007, 103, 1380–1384.
[29]  Imran, M.; Talpur, F.N.; Jan, M.S.; Khan, A.; Khan, I. Analysis of nutritional components of some wild edible plants. J. Chem. Soc. Pak 2007, 29, 500–508.
[30]  Sass-Kiss, A. Differences in anthocyanin and carotenoids content of fruits and vegetables. Food Res. Int 2005, 38, 1023–1029.
[31]  Cieslik, E.; Greda, A.; Adamus, W. Contents of polyphenols in fruit and vegetables. Food Chem. 2006, 94, 135–142.
[32]  Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 2007, 101, 140–147.
[33]  Kim, D.O.; Heo, H.J.; Kim, Y.J.; Yang, H.S.; Lee, C.Y. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem 2005, 53, 9921–9927.
[34]  Jakobek, L.; Seruga, M.; Medvidovi?-Kosanovi?, M.; Novak, I. Anthocyanin content and antioxidant activity of various red fruit juices. Dtsch. Lebensm. -Rundsch 2007, 103, 58–64.
[35]  Jakobek, L.; Seruga, M.; Novak, I.; Medvidovic-Kosanovic, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch. Lebensm. -Rundsch 2007, 103, 369–378.
[36]  Matilla, P.; Hellstrom, J.; T?rr?nen, R. Phenolic acids in berries, fruits and beverages. J. Agric. Food Chem 2006, 54, 7193–7199.
[37]  Franke, A.A.; Custer, L.J.; Arakaki, C.; Murphy, S.P. Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. J. Food Compos. Anal. 2004, 17, 1–35.
[38]  Olsson, M.E.; Gustavsson, K.; Andersson, S.; Nilsson, A.; Duan, R. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem 2004, 52, 7264–7271.
[39]  Sultana, B.; Anwar, F. Flavonols (kaempferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 2008, 108, 879–884.
[40]  Bohm, V.; Kuhnert, S.; Rohm, H.; Scholze, G. Improving the nutritional quality of microwave-vacuum dried strawberries: A preliminary study. Food Sci. Technol. Int 2006, 12, 67–75.
[41]  Piljac-Zegarac, J.; Samec, D. Antioxidant stability of small fruits in postharvest storage at room and refrigerator temperatures. Food Res. Int 2011, 44, 345–350.
[42]  Bae, S.H.; Suh, H.J. Antioxidant activities of five different mulberry cultivars in Korea. LWT Food Sci. Technol 2007, 40, 955–962.
[43]  Imran, M.; Khan, H.; Shah, M.; Khan, R.; Khan, F. Chemical composition and antioxidant activity of certain Morus species. J. Zhejiang Univ. Sci. B 2010, 11, 973–980.
[44]  Gungor, N.; Sengul, M. Antioxidant activity, total phenolic content and selected physicochemical properties of white mulberry (Morus alba. L.) fruits. Int. J. Food Prop 2008, 11, 44–52.
[45]  Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 2005, 21, 207–213.
[46]  Hakkinen, S.H.; Torronen, A.R. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Res. Int 2000, 33, 517–524.
[47]  Aminah, A.; Anna, P.K. Influence of ripening stages on physicochemical characteristics and antioxidant properties of bitter gourd (Momordica charantia). Int. Food Res. J 2011, 18, 895–900.
[48]  Ferreira, I.C.F.R.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal. Food Chem 2007, 100, 1511–1516.
[49]  Lugasi, A.; Hovari, J. Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Nahrung 2003, 47, 79–86.
[50]  Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetables. J. Agric. Food Chem 2007, 55, 8596–8603.
[51]  Hakkinen, S.; Heinonen, M.; Karenlampi, S.; Mykkanen, H.; Ruuskanen, J.; Torronnen, R. Screening of selected flavonoids and phenolic acids in 19 berries. Food Res. Int 1999, 32, 345–353.
[52]  Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem 1999, 47, 3954–3962.
[53]  Maatta-Riihinen, M.; Kamal-Eldin, A.; Torronen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (Family Rosaceae). J. Agric. Food Chem 2004, 52, 6178–6187.
[54]  Stohr, H.; Herrmann, K. The phenolics of fruits, the phenolics of strawberries and their changes during development and ripeness of the fruits. Z Lebensm-Unters Forsch 1975b, 159, 341–348.
[55]  Kosar, M.; Kafkas, E.; Paydas, S.; Baser, K.H.C. Phenolic composition of strawberry genotypes at different maturation stages. J. Agric. Food Chem 2004, 52, 1586–1589.
[56]  Ndri, D.; Calani, L.; Mazzeo, T.; Scazzina, F.; Rinaldi, M.; Rio, D.D.; Pellegrini, N.; Brighenti, F. Effects of different maturity stages on antioxidant content of Ivorian Gnagnan (Solanum indicum L.) berries. Molecules 2010, 15, 7125–7138.
[57]  Vasco, C.; Riihinen, K.; Ruales, J.; Kamal-Eldin, A. Chemical composition and phenoliccompound profile of morti?o (Vaccinium floribundum Kunth). J. Agric. Food Chem 2009, 57, 8274–8281.
[58]  Hernanz, D.; Recamales, A.F.; Melendez-Martinez, A.J.; Gonzalez-Miret, M.L.; Heredia, F.J. Assessment of the differences in the phenolic composition of five strawberry cultivars (Fragaria ×ananassa Duch.) grown in two different soilless systems. J. Agric. Food Chem 2007, 55, 1846–1852.
[59]  H?kkinen, S.H.; K?renlampi, S.O.; Mykk?nen, H.M.; T?rr?nen, A.R. Influence of domestic processing and storage on flavonol contents in berries. J. Agric. Food Chem 2000, 48, 2960–2965.
[60]  McDonald, M.; Hughes, M.; Burns, J. Survey of the free and conjugated myricetin and quercetin content of red wines of different geographical origins. J. Agric. Food Chem 1998, 46, 368–375.
[61]  Lakenbrink, C.; Lapczynski, S.; Maiwald, B.; Engelhardt, U.H. Flavonoids and other polyphenols in consumer brews of tea and other caffeinated beverages. J. Agric. Food Chem 2000, 48, 2848–2852.
[62]  Trichopoulou, A.; Vasilpoulou, E.; Hollman, P. Nutritional composition and flavonoid content of edible wild greens and green pies: A potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem 2000, 70, 319–323.
[63]  Vuorinen, H.; Maata, K.; Torronen, R. Content of the flavonols myricetin, quercetin, and kaempferol in Finnish berry wines. J. Agric. Food Chem 2000, 48, 2675–2680.
[64]  Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem 1997, 30, 91–113.
[65]  Bilyk, A.; Sapers, G.M. Varietal differences in the quercetin, kaempferol, and myricetin contents of highbush blueberry, cranberry, and thornless blackberry. J. Agric. Food Chem 1986, 34, 585–588.
[66]  Memon, A.A.; Najma, M.; Luthria, D.L.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci 2010, 60, 25–32.
[67]  Voca, S.; Dobricevic, N.; Dragovic-Uzelac, V.; Duralija, B.; Druzic, J. Fruit quality of new early ripening strawberry cultivars in Croatia. Food Technol. Biotechnol 2008, 46, 292–298.
[68]  Jamil, A.; Anwar, F.; Ashraf, M. Plant Tolerance to Biotic and Abiotic Stresses through Modern Genetic Engineering. In Crops, Growth, Quality and Biotechnology; Dris, R., Ed.; WFL Publisher: Helsinki, Finland, 2005; pp. 1276–1299.
[69]  Ali, Q.; Ashraf, M. Exogenously applied glycine, betaine enhances seed and seed oil quality of maize (Zea mays L.) under water deficit conditions. Environ. Exp. Bot 2011, 71, 249–259.
[70]  Karjalainen, R.; Lehtinen, A.; Hietaniemi, V.; Pihlava, J.M.; Jokinen, K.; Kein?nen, M.; Julkunen-Tiito, R. Benzothiadiazole and glycine betaine treatments enhance phenolic compound production in strawberry. Acta Hortic 2002, 567, 353–356.
[71]  Chaovanalikit, A.; Wrolstad, R.E. Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J. Food Sci 2004, 69, 67–72.
[72]  Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem 2002, 50, 3010–3014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133