全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Identi?cation of Novel Potential β-N-Acetyl-D-Hexosaminidase Inhibitors by Virtual Screening, Molecular Dynamics Simulation and MM-PBSA Calculations

DOI: 10.3390/ijms13044545

Keywords: β-N-acetyl-D-hexosaminidase, OfHex1, inhibitor, virtual screening, molecular dynamics, MM/PBSA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chitinolytic β- N-acetyl-D-hexosaminidases, as a class of chitin hydrolysis enzyme in insects, are a potential species-specific target for developing environmentally-friendly pesticides. Until now, pesticides targeting chitinolytic β- N-acetyl-D-hexosaminidase have not been developed. This study demonstrates a combination of different theoretical methods for investigating the key structural features of this enzyme responsible for pesticide inhibition, thus allowing for the discovery of novel small molecule inhibitors. Firstly, based on the currently reported crystal structure of this protein (OfHex1.pdb), we conducted a pre-screening of a drug-like compound database with 8 × 10 6 compounds by using the expanded pesticide-likeness criteria, followed by docking-based screening, obtaining 5 top-ranked compounds with favorable docking conformation into OfHex1. Secondly, molecular docking and molecular dynamics simulations are performed for the five complexes and demonstrate that one main hydrophobic pocket formed by residues Trp424, Trp448 and Trp524, which is significant for stabilization of the ligand–receptor complex, and key residues Asp477 and Trp490, are respectively responsible for forming hydrogen-bonding and π–π stacking interactions with the ligands. Finally, the molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) analysis indicates that van der Waals interactions are the main driving force for the inhibitor binding that agrees with the fact that the binding pocket of OfHex1 is mainly composed of hydrophobic residues. These results suggest that screening the ZINC database can maximize the identification of potential OfHex1 inhibitors and the computational protocol will be valuable for screening potential inhibitors of the binding mode, which is useful for the future rational design of novel, potent OfHex1-specific pesticides.

References

[1]  Cohen, E. Chitin synthesis and degradation as targets for pesticide action. Arch. Insect Biochem. Physiol 1993, 22, 245–261.
[2]  Kramer, K.J.; Koga, D. Insect chitin: Physical state, synthesis, degradation and metabolic regulation. Insect Biochem 1986, 16, 851–877.
[3]  Jeuniaux, C. [111] Chitinases. Methods Enzymol. 1966, 8, 644–650.
[4]  Keyhani, N.O.; Roseman, S. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta 1999, 1473, 108–122.
[5]  Fukamizo, T.; Kramer, K.J. Mechanism of chitin hydrolysis by the binary chitinase system in insect moulting fluid. Insect Biochem 1985, 15, 141–145.
[6]  Strasser, R.; Bondili, J.S.; Schoberer, J.; Svoboda, B.; Liebminger, E.; Glossl, J.; Altmann, F.; Steinkellner, H.; Mach, L. Enzymatic Properties and subcellular localization of arabidopsis beta-N-acetylhexosaminidases. Plant Physiol 2007, 145, 5–16.
[7]  Yi, C.K. Increase in β-N-acetylglucosaminidase activity during germination of cotton seeds. Plant Physiol 1981, 67, 68–73.
[8]  Watanabe, K. Biochemical studies on carbohydrates. J. Biochem 1936, 24, 297–303.
[9]  Koga, D.; Isogai, A.; Sakuda, S.; Matsumoto, S.; Suzuki, A.; Kimura, S.; Ide, A. Specific inhibition of Bombyx mori chitinase by allosamidin. Agric. Biol. Chem 1987, 51, 471–476.
[10]  Arai, N.; Shiomi, K.; Iwai, Y.; Omura, S. Argifin, a new chitinase inhibitor, produced by Gliocladium sp. FTD-0668. II. Isolation, physico-chemical properties, and structure elucidation. J. Antibiot 2000, 53, 609–614.
[11]  Arai, N.; Shiomi, K.; Yamaguchi, Y.; Masuma, R.; Iwai, Y.; Turberg, A.; Kolbl, H.; Omura, S. Argadin, a new chitinase inhibitor, produced by Clonostachys sp. FO-7314. Chem. Pharmac. Bull 2000, 48, 1442–1446.
[12]  Gouda, H.; Yanai, Y.; Sugawara, A.; Sunazuka, T.; Omura, S.; Hirono, S. Computational analysis of the binding affinities of the natural-product cyclopentapeptides argifin and argadin to chitinase B from Serratia marcescens. Bioorg. Med. Chem 2008, 16, 3565–3579.
[13]  Yang, Q.; Liu, T.; Liu, F.; Qu, M.; Qian, X. A novel β-N-acetyl-d-hexosaminidase from the insect Ostrinia furnacalis (Guenée). FEBS J 2008, 275, 5690–5702.
[14]  Liu, H.; Wang, X.; Wang, J.; Wang, J.; Li, Y.; Yang, L.; Li, G. Structural determinants of CX-4945 derivatives as protein kinase CK2 inhibitors: A computational study. Int. J. Mol. Sci 2011, 12, 7004–7021.
[15]  Wang, X.; Yang, W.; Xu, X.; Zhang, H.; Li, Y.; Wang, Y. Studies of benzothiadiazine derivatives as hepatitis C virus NS5B polymerase inhibitors using 3D-QSAR, molecular docking and molecular dynamics. Curr. Med. Chem 2010, 17, 2788–2803.
[16]  Irwin, J.J.; Raushel, F.M.; Shoichet, B.K. Virtual screening against metalloenzymes for inhibitors and substrates. Biochemistry 2005, 44, 12316–12328.
[17]  Hou, T.; Chen, K.; McLaughlin, W.A.; Lu, B.; Wang, W. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput. Biol 2006, 2, doi:10.1371/journal.pcbi.0020001.
[18]  Liu, T.; Zhang, H.; Liu, F.; Wu, Q.; Shen, X.; Yang, Q. Structural determinants of an insect β-N-acetyl-d-hexosaminidase specialized as a chitinolytic enzyme. J. Biol. Chem 2011, 286, 4049–4058.
[19]  Pranav Kumar, S.; Kulkarni, V.M. Insights into the selective inhibition of Candida albicans secreted aspartyl protease: A docking analysis study. Bioorg. Med. Chem 2002, 10, 1153–1170.
[20]  Wang, Y.; Li, Y.; Ma, Z.; Yang, W.; Ai, C. Mechanism of microRNA-target interaction: Molecular dynamics simulations and thermodynamics analysis. PLoS Comput. Biol 2010, 6, doi:10.1371/journal.pcbi.1000866.
[21]  Xu, X.; Yang, W.; Wang, X.; Li, Y.; Wang, Y.; Ai, C. Dynamic communication between androgen and coactivator: Mutually induced conformational perturbations in androgen receptor ligand-binding domain. Proteins Struct. Funct. Bioinforma 2011, 79, 1154–1171.
[22]  Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model 2005, 45, 177–182.
[23]  Liu, B.; Yu, F.; Yao, J.; Liao, Q.; Fan, B. Screening rules of lead compounds of herbicide, fungicide and insecticide. Chin. J. Pestic. Sci 2007, 3, 220–228.
[24]  Welch, W.; Ruppert, J.; Jain, A.N. Hammerhead: Fast, fully automated docking of flexible ligands to protein binding sites. Chem. Biol 1996, 3, 449–462.
[25]  AutoDock Homepage. Available online: http://autodock.scripps.edu/ , accessed on 12 July 2011.
[26]  Medina-Franco, J.L.; López-Vallejo, F.; Kuck, D.; Lyko, F. Natural products as DNA methyltransferase inhibitors: A computer-aided discovery approach. Mol. Divers 2011, 15, 1–12.
[27]  Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228.
[28]  Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem 1998, 19, 1639–1662.
[29]  Case, D.A.; Darden, T.; Cheatham, T.E., III; Simmerling, C.; Wang, J.; Duke, R.E.; Luo, R.; Crowley, M.; Walker, R.; Zhang, W.; et al. AMBER 10; University of California: San Francisco, CA, USA, 2008.
[30]  Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem 2004, 25, 1157–1174.
[31]  Lee, M.C.; Duan, Y. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins Struct. Funct. Bioinforma 2004, 55, 620–634.
[32]  Weber, W.; Hünenberger, P.H.; McCammon, J.A. Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J. Phys. Chem. B 2000, 104, 3668–3675.
[33]  Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys 1995, 103, 8577–8593.
[34]  Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys 1977, 23, 327–341.
[35]  Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res 2000, 33, 889–897.
[36]  Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149.
[37]  Kuhn, B.; Kollman, P.A. Binding of a diverse set of ligands to avidin and streptavidin: An accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J. Med. Chem 2000, 43, 3786–3791.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133