Labeling of Anti-MUC-1 Binding Single Chain Fv Fragments to Surface Modified Upconversion Nanoparticles for an Initial in Vivo Molecular Imaging Proof of Principle Approach
In vivo optical Imaging is an inexpensive and highly sensitive modality to investigate and follow up diseases like breast cancer. However, fluorescence labels and specific tracers are still works in progress to bring this promising modality into the clinical day-to-day use. In this study an anti-MUC-1 binding single-chain antibody fragment was screened, produced and afterwards labeled with newly designed and surface modified NaYF 4:Yb,Er upconversion nanoparticles as fluorescence reporter constructs. The MUC-1 binding of the conjugate was examined in vitro and in vivo using modified state-of-the-art small animal Imaging equipment. Binding of the newly generated upconversion nanoparticle based probe to MUC-1 positive cells was clearly shown via laser scanning microscopy and in an initial proof of principal small animal optical imaging approach.
References
[1]
Bremer, C.; Ntziachristos, V.; Weissleder, R. Optical-based molecular imaging: Contrast agents and potential medical applications. Eur. Radiol 2003, 13, 231–243.
[2]
Grimm, J.; Kirsch, D.G.; Windsor, S.D.; Kim, C.F.; Santiago, P.M.; Ntziachristos, V.; Jacks, T.; Weissleder, R. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 14404–14409.
[3]
Mahmood, U.; Weissleder, R. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther 2003, 2, 489–496.
[4]
Ntziachristos, V.; Bremer, C.; Weissleder, R. Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. Radiol 2003, 13, 195–208.
[5]
Von Wallbrunn, A.; Waldeck, J.; Hoeltke, C.; Zühlsdorf, M.; Mesters, R.; Heindel, W.; Sch?fers, M.; Bremer, C. In vivo optical imaging of CD13/APN-expression in tumor xenografts. J. Biomed. Opt 2008, 13, doi:10.1117/1.2839046.
[6]
Singh, R.; Bandyopadhyay, D. MUC1: A target molecule for cancer therapy. Cancer Biol. Ther 2007, 6, 481–486.
[7]
Naczynski, D.J.; Andelman, T.; Pal, D.; Chen, S.; Riman, R.E.; Roth, C.M.; Moghe, P.V. Albumin nanoshell encapsulation of near-infrared-excitable rare-Earth nanoparticles enhances biocompatibility and enables targeted cell imaging. Small 2010, 6, 1631–1640.
[8]
Xiong, L.; Chen, Z.; Tian, Q.; Cao, T.; Xu, C.; Li, F. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem 2009, 81, 8687–8694.
[9]
Zako, T.; Nagata, H.; Terada, N.; Utsumi, A.; Sakono, M.; Yohda, M.; Ueda, H.; Soga, K.; Maeda, M. Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem. Biophys. Res. Commun 2009, 381, 54–58.
[10]
Bruchez, M.J.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.
[11]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762.
[12]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol 2004, 22, 969–976.
[13]
Byrne, S.J.; Williams, Y.; Davies, A.; Corr, S.A.; Rakovich, A.; Gun’ko, Y.K.; Rakovich, Y.P.; Donegan, J.F.; Volkov, Y. Jelly dots: Synthesis and cytotoxicity studies of CdTe quantum dot-gelatin nanocomposites. Small 2007, 3, 1152–1156.
[14]
Chang, E.; Thekkek, N.; Yu, W.W.; Colvin, V.L.; Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2006, 2, 1412–1417.
[15]
Lim, S.F.; Riehn, R.; Ryu, W.S.; Khanarian, N.; Tung, C.K.; Tank, D.; Austin, R.H. In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. Nano Lett 2006, 6, 169–174.
[16]
Van de Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A.K.; Niedbala, R.S.; Tanke, H.J. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol 2001, 19, 273–276.
[17]
Nyk, M.; Kumar, R.; Ohulchanskyy, T.Y.; Bergey, E.J.; Prasad, P.N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm and Yb doped fluoride nanophosphors. Nano Lett 2008, 8, 3834–3838.
[18]
Chatterjee, D.K.; Rufaihah, A.J.; Zhang, Y. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 2008, 29, 937–943.
[19]
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev 2004, 104, 139–173.
[20]
Suyver, J.F.; Grimm, J.; Kr?mer, K.W.; Güdel, H.-U. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J. Lumin 2006, 117, 1–12.
[21]
Heer, S.; K?mpe, K.; Güdel, H.-U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater 2004, 16, 2102–2105.
[22]
Wang, F.; Chatterjee, D.V.; Li, Z.; Zhang, Y.; Fan, X.; Wang, M. Synthesis of polyethyleneimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786–5791.
[23]
Boyer, J.C.; Cuccia, L.A.; Capobianco, J.A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett 2007, 7, 847–852.
[24]
Schaefer, H.; Ptacek, P.; Koempe, K.; Haase, M. Lanthanide-doped α-NaYF4 nanocrystals in aqueous solution displaying strong upconversion emission. Chem. Mater 2007, 19, 1396–1400.
Naccache, R.; Vetrone, F.; Mahalingam, V.; Cuccia, L.A.; Capobianco, J.A. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem. Mater 2009, 21, 717–723.
[27]
Zhang, T.; Ge, J.; Hu, Y.; Yin, Y. A general approach for transferring hydrophobic nanocrystals into water. Nano Lett 2007, 7, 3203–3207.
[28]
Zhang, H.; Li, Y.; Ivanov, I.A.; Qu, Y.; Huang, Y.; Duan, X. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. Engl 2010, 49, 2865–2868.
[29]
Kufe, D.W. Mucins in cancer: Function, prognosis and therapy. Nat. Rev. Cancer 2009, 9, 874–885.
[30]
Rajabi, H.; Ahmad, R.; Jin, C.; Kosugi, M.; Alam, M.; Joshi, M.D.; Kufe, D. MUC1-C oncoprotein induces TCF7L2 activation and promotes cyclin D1 expression in human breast cancer cells. J. Biol. Chem 2012, doi:10.1074/jbc.M111.323311.
[31]
Yu, X.F.; Sun, Z.; Li, M.; Xiang, Y.; Wang, Q.Q.; Tang, F.; Wu, Y.; Cao, Z.; Li, W. Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 2010, 31, 8724–8731.
[32]
Wang, M.; Mi, C.C.; Wang, W.X.; Liu, C.H.; Wu, Y.F.; Xu, Z.R.; Mao, C.B.; Xu, S.K. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 2009, 3, 1580–1586.
[33]
Mommers, E.C.; Leonhart, A.M.; von Mensdorff-Pouilly, S.; Schol, D.J.; Hilgers, J.; Meijer, C.J.; Baak, J.P.; van Diest, P.J. Aberrant expression of MUC1 mucin in ductal hyperplasia and ductal carcinoma in situ of the breast. Int. J. Cancer 1999, 84, 466–469.
[34]
Moore, A.; Medarova, Z.; Potthast, A.; Dai, G. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 2004, 64, 1821–1827.
[35]
Hischem?ller, A.; Nordmann, J.; Ptacek, P.; Mummenhoff, K.; Haase, M. In vivo imaging of the uptake of upconversion nanoparticles by plant roots. J. Biomed. Nanotechnol 2009, 5, 278–284.
[36]
Barth, S.; Huhn, M.; Wels, W.; Diehl, V.; Engert, A. Construction and in vitro evaluation of RFT5(scFv)-ETA’, a new recombinant single-chain immunotoxin with specific cytotoxicity toward CD25+ Hodgkin-derived cell lines. Int. J. Mol. Med 1998, 1, 249–256.
[37]
Dower, W.J. Electroporation of bacteria: A general approach to genetic transformation. Genet. Eng 1990, 12, 275–295.
[38]
Huhn, M.; Sasse, S.; Tur, M.K.; Matthey, B.; Schinkothe, T.; Rybak, S.M.; Barth, S.; Engert, A. Human angiogenin fused to human CD30 ligand (Ang-CD30L) exhibits specific cytotoxicity against CD30-positive lymphoma. Cancer Res 2001, 61, 8737–8742.