全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

DOI: 10.3390/ijms13044141

Keywords: pretreatment, CO2 laser, ultrasonic, corn stover, FT-IR

Full-Text   Cite this paper   Add to My Lib

Abstract:

To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO 2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO 2 laser irradiation. The present work demonstrated that the CO 2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO 2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO 2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

References

[1]  Sassner, P.; Galbe, M.; Zacchi, G. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 2008, 32, 422–430.
[2]  Sun, Y.; Cheng, J.Y. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol 2002, 83, 1–11.
[3]  Kumar, P.; Barrett, D.M.; Delwiche, M.D.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res 2009, 48, 3713–3729.
[4]  Xu, J.; Thomsen, M.H.; Thomsen, A.B. Pretreatment on corn stover with low concentration of formic acid. J. Microbiol. Biotechnol 2009, 19, 845–850.
[5]  Talebnia, F.; Karakashev, D.; Angelidaki, I. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresour. Technol 2010, 101, 4744–4753.
[6]  Bommarius, A.S.; Katona, A.; Cheben, S.E.; Patel, A.S.; Ragauskas, A.J.; Knudson, K.; Pu, Y.Q. Cellulase kinetics as a function of cellulose pretreatment. Metab. Eng 2008, 10, 370–381.
[7]  Ghazali, A.; Wan Rosli, W.D.; Law, K.N. Pre-treatment of oil palm biomass for alkaline peroxide pulping. Cellul. Chem. Technol 2009, 43, 329–336.
[8]  Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol 2005, 96, 673–686.
[9]  Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J. Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science 2008, 319, 1238–1244.
[10]  Nath, A.K.; Reghu, T.; Paul, C.P.; Ittoop, M.O.; Bhargava, P. High-power transverse flow CW CO2 laser for material processing applications. Opt. Laser Technol 2005, 37, 329–335.
[11]  Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci 1991, 74, 3583–3597.
[12]  David, P.; Marcia, P. Corn and Cellulosic Ethanol Cause Major Problems. Energies 2008, 1, 35–37.
[13]  Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y.; Mitchinson, C.; Saddler, J.N. Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol. Prog 2009, 25, 333–339.
[14]  Zheng, M.; Li, X.; Li, L.; Yang, X.; He, Y. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresour. Technol 2009, 100, 5140–5145.
[15]  Smidt, E.; Meissl, K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag 2007, 27, 268–276.
[16]  Yu, C.T.; Chen, W.H.; Men, L.C.; Hwang, W.S. Microscopic structure features changes of rice straw treated by boiled acid solution. Ind. Crops Prod 2009, 29, 308–315.
[17]  Tian, S.; Wang, Z.; Zuo, L.; Fan, Z. Optimization of CO2 laser-based pretreatment of corn stover using response surface methodology. Bioresour. Technol 2011, 102, 10493–10497.
[18]  Monobe, H.; Awazu, K.; Shimizu, Y. Alignment control of columnar liquid crystals with wavelength tunable CO2 laser irradiation. Thin Solid Films 2008, 516, 2677–2681.
[19]  Soni, R.K.; Mandloie, V.K.; Pote, M.B.; Nath, A.K. Spinning cone water film power meter for high-power CO2 lasers. Opt. Laser Technol 2007, 39, 196–201.
[20]  Baba, Y.; Tanabe, T.; Shirai, N.; Watanabe, T.; Honda, Y.; Watanabe, T. Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenergy 2011, 35, 320–324.
[21]  Gong, G.; Liu, D.; Huang, Y. Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosys. Eng 2010, 107, 67–73.
[22]  Liu, J.; Takada, R.; Karita, S.; Watanabe, T.; Honda, Y.; Watanabe, T. Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol. Bioresour. Technol 2010, 101, 9355–9360.
[23]  Verma, P.; Watanabe, T.; Honda, Y.; Watanabe, T. Microwave-assisted pretreatment of woody biomass with ammonium molybdate activated by H2O2. Bioresour. Technol 2011, 102, 3941–3945.
[24]  Taghizadeh, M.T.; Mehrdad, A. Calculation of the rate constant for the ultrasonic degradation of aqueous solutions of polyvinyl alcohol by viscometry. Ultrason. Sonochem 2003, 10, 309–313.
[25]  Zhu, J.Y.; Pan, X.; Zalesny, R.S., Jr. Pretreatment of woody biomass for biofuel production: Energy efficiency, technologies, and recalcitrance. Appl. Microbiol. Biotechnol. 2010, 87, 847–857.
[26]  Adney, B.; Nrel, J.B. Measurement of Cellulase Activities; LAP-006 NREL Analytical Procedure; National Renewable Energy Laboratory: Golden, CO, USA, 1996.
[27]  Qi, B.; Chen, X.; Shen, F.; Su, Y.; Wan, Y. Optimization of enzymatic hydrolysis of wheat straw pretreated by alkaline peroxide using response surface methodology. Ind. Eng. Chem. Res 2009, 48, 7346–7353.
[28]  Hao, L.; Lawrence, J.; Phua, Y.F.; Chian, K.S.; Lim, G.C.; Zheng, H.Y. Enhanced human osteoblast cell adhesion and proliferation on 316 LS stainless steel by means of CO2 laser surface treatment. J. Biomed. Mater. Res. B 2005, 73, 148–156.
[29]  Utley, D.S.; Koch, R.J.; Egbert, B.M. Histologic analysis of the thermal effect on epidermal and dermal structures following treatment with the superpulsed CO2 laser and the Erbium:YAG laser: An in vivo study. Laser Surg. Med 1999, 24, 93–102.
[30]  Ohkubo, T.; Yabe, T.; Yoshida, K.; Uchida, S.; Funatsu, T.; Bagheri, B.; Oishi, T.; Daito, K.; Ishioka, M.; Nakayama, Y.; et al. Solar-pumped 80 W laser irradiated by a Fresnel lens. Opt. Lett 2009, 34, 175–177.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133