Cooperative effects of magnesium ions and acidic polypeptides originating from a family of proteins known as Asprich (mollusk Atrina rigida) were studied. In our previous studies, these two acidic polypeptides were found to be effective in controlling the morphology of the calcium carbonate mineral, the main inorganic constituent of prismatic layer of the mollusk shell. Since these Asprich sequences are believed to contain a putative magnesium binding domain, the morphology-controlling effects were further investigated with the addition of magnesium ions. The mineral morphology was dramatically changed by the combined influence of each polypeptides and the magnesium ions, substantiating the recognized importance of magnesium in the formation of calcium carbonate-based biominerals.
References
[1]
Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: New York NY, USA, 1989.
[2]
Weiner, S.; Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem 1997, 7, 689–702.
[3]
Almqvist, N.; Thomson, N.H.; Smith, B.L.; Stucky, G.D.; Morse, D.E.; Hansma, P.K. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater. Sci. Eng. C 1999, C7, 37–43.
[4]
Li, X.D.; Chang, W.-C.; Chao, Y.J.; Wang, R.Z.; Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite materials: the shell of red abalone. Nano Lett 2004, 4, 613–617.
[5]
Belcher, A.M.; Wu, X.H.; Christensen, R.J.; Hansma, P.K.; Stucky, G.D.; Morse, D.E. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 1996, 381, 56–58.
[6]
Evans, J.S. “Apples” and “oranges”: comparing the structural aspects of biomineral- and ice-interaction proteins. Curr. Opin. Colloid Interface Sci 2003, 8, 48–54.
[7]
Sarikaya, M.; Tamerler, C.; Jen, A.K.-Y.; Schulten, K.; Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat. Mater 2003, 2, 577–585.
[8]
C?lfen, H.; Antonietti, M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed 2005, 44, 5576–5591.
[9]
Lippmann, F. Sedimentary Carbonate Minerals; Springer-Verlag: Berlin, Germany, 1973.
[10]
Raz, S.; Hamilton, P.C.; Wilt, F.H.; Weiner, S.; Addadi, L. The transient phase of amorphous calcium carbonate in sea urchin larval spicules: the involvement of proteins and magnesium ions in its formation and stabilization. Adv. Funct. Mater 2003, 13, 480–486.
[11]
Han, Y.-J.; Wysocki, L.M.; Thanawala, M.S.; Siegrist, T.; Aizenberg, J. Template-dependent morphogenesis of oriented calcite crystals in the presence of magnesium ions. Angew. Chem. Int. Ed 2005, 44, 2386–2390.
[12]
Davis, K.J.; Dove, P.M.; Wasylenki, L.E.; DeYoreo, J.J. Morphological consequences of differential Mg2+ incorporation at structurally distinct steps on calcite. Am. Mineral 2004, 89, 714–720.
[13]
Gotliv, B.-A.; Kessler, N.; Sumerel, J.L.; Morse, D.E.; Tuross, N.; Addadi, L.; Weiner, S. Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chem. Bio. Chem 2005, 6, 304–314.
[14]
Ndao, M.; Keene, E.; Amos, F.A.; Rewari, G.; Ponce, C.B.; Estroff, L.; Evans, J.S. Intrinsically disordered mollusk shell prismatic protein that modulates calcium carbonate crystal growth. Biomacromolecules 2010, 11, 2539–2544.
[15]
Ndao, M.; Ponce, C.B.; Evans, J.S. Evidence of self-association and aggregation-promoting sequences within the “acidic” biomineralization protein, Asprich 3. Biochemistry .
[16]
Kim, I.W.; Darragh, M.R.; Orme, C.; Evans, J.S. Molecular “tuning” of crystal growth by nacre-associated polypeptides. Cryst. Growth Des 2006, 6, 5–10.
[17]
Kim, I.W.; Giocondi, J.L.; Orme, C.; Collino, S.; Evans, J.S. Morphological and kinetic transformation of calcite crystal growth by prismatic-associated Asprich sequences. Cryst. Growth Des 2008, 8, 1154–1160.
[18]
Collino, S.; Kim, I.W.; Evans, J.S. Identification of an “acidic” C-terminal mineral modification sequence from the mollusk shell protein Asprich. Cryst. Growth Des 2006, 6, 839–842.
[19]
Graf, D.L. Crystallographic tables for the rhombohedral carbonates. Am. Mineral 1961, 46, 1283–1316.
[20]
Chung, J.; Kim, I.W. Oriented crystallization of xanthine derivatives sublimated on self-assembled monolayers. Korean J. Chem. Eng 2011, 28, 232–238.
[21]
Falk, R.L. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. J. Sediment. Petrol 1974, 44, 40–53.
Hartman, P.; Perdok, W.G. On the relations between structure and morphology of crystals. Acta Crystallogr 1955, 8, 49–52.
[24]
Heijnen, W.M.M. The morphology of gel grown calcite (in Russian). N. Jb. Miner. Mh 1985, 8, 357–381.
[25]
Aquilano, D.; Calleri, M.; Natoli, E.; Rubbo, M.; Sgualdino, G. The {104} cleavage rhombohedron of calcite: theoretical equilibrium properties. Mater. Chem. Phys 2000, 66, 159–163.
[26]
Walton, A.G. The Formation and Properties of Precipitates; Interscience Publishers: New York, USA, 1967; Volume Chapter 5.
[27]
Sch?ffer, T.E.; Ionescu-Zanetti, C.; Proksch, R.; Fritz, M.; Walters, D.A.; Almqvist, N.; Zaremba, C.M.; Belcher, A.M.; Smith, B.L.; Stucky, G.D.; et al. Does abalone nacre form by heteroepitaxial nucleationor by growth through mineral bridges? Chem. Mater 1997, 9, 1731–1740.
[28]
Pokroy, B.; Quintana, J.P.; Caspi, E.N.; Berner, A.; Zolotoyabko, E. Anisotropic lattice distortions in biogenic aragonite. Nat. Mater 2004, 3, 900–902.