Gelam honey exerts anti-inflammatory and antioxidant activities and is thought to have potent effects in reducing infections and healing wounds. The aim of this study was to investigate the effects of intravenously-injected Gelam honey in protecting organs from lethal doses of lipopolysaccharide (LPS). Six groups of rabbits ( N = 6) were used in this study. Two groups acted as controls and received only saline and no LPS injections. For the test groups, 1 mL honey (500 mg/kg in saline) was intravenously injected into two groups (treated), while saline (1 mL) was injected into the other two groups (untreated); after 1 h, all four test groups were intravenously-injected with LPS (0.5 mg/kg). Eight hours after the LPS injection, blood and organs were collected from three groups (one from each treatment stream) and blood parameters were measured and biochemical tests, histopathology, and myeloperoxidase assessment were performed. For survival rate tests, rabbits from the remaining three groups were monitored over a 2-week period. Treatment with honey showed protective effects on organs through the improvement of organ blood parameters, reduced infiltration of neutrophils, and decreased myeloperoxidase activity. Honey-treated rabbits also showed reduced mortality after LPS injection compared with untreated rabbits. Honey may have a therapeutic effect in protecting organs during inflammatory diseases.
References
[1]
Lazaridou, A.; Biliaderis, C.G.; Bacandritsos, N.; Sabatini, A.G. Composition, thermal and rheological behaviour of selected greek honeys. J. Food Eng 2004, 64, 9–21.
Kassim, M.; Achoui, M.; Mansor, M.; Yusoff, K.M. The inhibitory effects of gelam honey and its extracts on nitric oxide and prostaglandin E(2) in inflammatory tissues. Fitoterapia 2010, 81, 1196–1201.
[10]
Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res 2010, 30, 650–659.
[11]
Wang, H.; Li, W.; Li, J.; Rendon-Mitchell, B.; Ochani, M.; Ashok, M.; Yang, L.; Yang, H.; Tracey, K.J.; Wang, P.; et al. The aqueous extract of a popular herbal nutrient supplement, angelica sinensis, protects mice against lethal endotoxemia and sepsis. J. Nutr 2006, 136, 360–365.
[12]
Bone, R.C.; Grodzin, C.J.; Balk, R.A. Sepsis: A new hypothesis for pathogenesis of the disease process. Chest 1997, 112, 235–243.
[13]
Bohlinger, I.; Leist, M.; Gantner, F.; Angermuller, S.; Tiegs, G.; Wendel, A. DNA fragmentation in mouse organs during endotoxic shock. Am. J. Pathol 1996, 149, 1381–1393.
[14]
Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the united states: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med 2001, 29, 1303–1310.
[15]
Cohen, J. The immunopathogenesis of sepsis. Nature 2002, 420, 885–891.
[16]
Al-Jabri, A.A. Honey, milk and antibiotics. Afr. J. Biotechnol 2005, 4, 1580–1587.
[17]
Molan, P.C. The potential of honey to promote oral wellness. Gen. Dent 2001, 49, 584–589.
[18]
Van Deventer, S.J.; ten Cate, J.W.; Tytgat, G.N. Intestinal endotoxemia. Clinical significance. Gastroenterology 1988, 94, 825–831.
[19]
Wenzel, R.P.; Pinsky, M.R.; Ulevitch, R.J.; Young, L. Current understanding of sepsis. Clin. Infect. Dis 1996, 22, 407–412.
[20]
Tracey, K.J.; Lowry, S.F.; Beutler, B.; Cerami, A.; Albert, J.D.; Shires, G.T. Cachectin/tumor necrosis factor mediates changes of skeletal muscle plasma membrane potential. J. Exp. Med 1986, 164, 1368–1373.
[21]
Schafer, T.; Scheuer, C.; Roemer, K.; Menger, M.D.; Vollmar, B. Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. FASEB J 2003, 17, 660–667.
[22]
Essani, N.A.; McGuire, G.M.; Manning, A.M.; Jaeschke, H. Endotoxin-induced activation of the nuclear transcription factor kappa B and expression of E-selectin messenger RNA in hepatocytes, Kupffer cells, and endothelial cells in vivo. J. Immunol 1996, 156, 2956–2963.
[23]
Dustin, M.L.; Springer, T.A. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu. Rev. Immunol 1991, 9, 27–66.
[24]
Luce, J.M. Acute lung injury and the acute respiratory distress syndrome. Crit. Care Med 1998, 26, 369–376.
[25]
Vincent, J.L.; Sakr, Y.; Ranieri, V.M. Epidemiology and outcome of acute respiratory failure in intensive care unit patients. Crit. Care Med 2003, 31, S296–S299.
[26]
Bernard, G.R.; Artigas, A.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; Legall, J.R.; Morris, A.; Spragg, R. The american-european consensus conference on ards. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med 1994, 149, 818–824.
[27]
Braude, S.; Nolop, K.B.; Hughes, J.M.; Barnes, P.J.; Royston, D. Comparison of lung vascular and epithelial permeability indices in the adult respiratory distress syndrome. Am. Rev. Respir. Dis 1986, 133, 1002–1005.
[28]
Patterson, C.E.; Barnard, J.W.; Lafuze, J.E.; Hull, M.T.; Baldwin, S.J.; Rhoades, R.A. The role of activation of neutrophils and microvascular pressure in acute pulmonary edema. Am. Rev. Respir. Dis 1989, 140, 1052–1062.
[29]
Tomashefski, J.F., Jr. Pulmonary pathology of the adult respiratory distress syndrome. Clin. Chest Med 1990, 11, 593–619.
[30]
Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146.
[31]
Wang, L.F.; Patel, M.; Razavi, H.M.; Weicker, S.; Joseph, M.G.; McCormack, D.G.; Mehta, S. Role of inducible nitric oxide synthase in pulmonary microvascular protein leak in murine sepsis. Am. J. Respir. Crit. Care Med 2002, 165, 1634–1639.
[32]
Tate, R.M.; Repine, J.E. Neutrophils and the adult respiratory distress syndrome. Am. Rev. Respir. Dis 1983, 128, 552–559.
[33]
Kindt, G.C.; Gadek, J.E.; Weiland, J.E. Initial recruitment of neutrophils to alveolar structures in acute lung injury. J. Appl. Physiol 1991, 70, 1575–1585.
[34]
Doerschuk, C.M. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 2001, 8, 71–88.
[35]
Brown, D.M.; Drost, E.; Donaldson, K.; MacNee, W. Deformability and cd11/cd18 expression of sequestered neutrophils in normal and inflamed lungs. Am. J. Respir. Cell Mol. Biol 1995, 13, 531–539.
[36]
Skoutelis, A.T.; Kaleridis, V.; Athanassiou, G.M.; Kokkinis, K.I.; Missirlis, Y.F.; Bassaris, H.P. Neutrophil deformability in patients with sepsis, septic shock, and adult respiratory distress syndrome. Crit. Care Med 2000, 28, 2355–2359.
[37]
Goode, H.F.; Webster, N.R. Free radicals and antioxidants in sepsis. Crit. Care Med 1993, 21, 1770–1776.
[38]
Novelli, G.P. Role of free radicals in septic shock. J. Physiol. Pharmacol 1997, 48, 517–527.
[39]
Razavi, H.M.; Werhun, R.; Scott, J.A.; Weicker, S.; Wang, L.F.; McCormack, D.G.; Mehta, S. Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury. Crit. Care Med 2002, 30, 868–873.
[40]
Hogg, J.C.; Doerschuk, C.M. Leukocyte traffic in the lung. Annu. Rev. Physiol 1995, 57, 97–114.
[41]
Downey, G.P.; Fialkow, L.; Fukushima, T. Initial interaction of leukocytes within the microvasculature: Deformability, adhesion, and transmigration. New Horiz 1995, 3, 219–228.
[42]
Razavi, H.M.; Wang, L.F.; Weicker, S.; Rohan, M.; Law, C.; McCormack, D.G.; Mehta, S. Pulmonary neutrophil infiltration in murine sepsis: Role of inducible nitric oxide synthase. Am. J. Respir. Crit. Care Med 2004, 170, 227–233.
[43]
Aoki, Y.; Ota, M.; Katsuura, Y.; Komoriya, K.; Nakagaki, T. Effect of activated human protein c on disseminated intravascular coagulation induced by lipopolysaccharide in rats. Arzneimittelforschung 2000, 50, 809–815.
[44]
Chiou, W.F.; Ko, H.C.; Chen, C.F.; Chou, C.J. Evodia rutaecarpa protects against circulation failure and organ dysfunction in endotoxaemic rats through modulating nitric oxide release. J. Pharm. Pharmacol 2002, 54, 1399–1405.
[45]
Chen, C.P.; Yokozawa, T.; Kitani, K. Beneficial effects of sanguisorbae radix in renal dysfunction caused by endotoxin in vivo. Biol. Pharm. Bull 1999, 22, 1327–1330.
[46]
Cunha, F.Q.; Assreuy, J.; Moncada, S.; Liew, F.Y. Phagocytosis and induction of nitric oxide synthase in murine macrophages. Immunology 1993, 79, 408–411.
[47]
Deaciuc, I.V.; D’Souza, N.B.; de Villiers, W.J.; Burikhanov, R.; Sarphie, T.G.; Hill, D.B.; McClain, C.J. Inhibition of caspases in vivo protects the rat liver against alcohol-induced sensitization to bacterial lipopolysaccharide. Alcohol. Clin. Exp. Res 2001, 25, 935–943.
[48]
Hong, K.W.; Kim, K.E.; Rhim, B.Y.; Lee, W.S.; Kim, C.D. Effect of rebamipide on liver damage and increased tumor necrosis factor in a rat model of endotoxin shock. Dig. Dis. Sci 1998, 43, 154S–159S.
[49]
Jiang, J.; Chen, H.; Diao, Y.; Tian, K.; Zhu, P.; Wang, Z. Distribution of endotoxins in tissues and circulation and its effects following hemorrhagic shock. Chin. Med. J. (Engl. ) 1998, 111, 118–122.
Wellings, R.P.; Corder, R.; Vane, J.R. Lack of effect of ET antibody or SB 209670 on endotoxin-induced renal failure. J. Cardiovasc. Pharmacol 1995, 26, S476–S478.
[52]
Memon, R.A.; Grunfeld, C.; Moser, A.H.; Feingold, K.R. Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology 1993, 132, 2246–2253.
[53]
Kassim, M.; Mansor, M.; Achoui, M.; Ong, G.S.Y.; Sekaran, S.D.; Yusoff, K.M. Honey as an immunomodulator during sepsis in animal models. Crit. Care 2009, 13, doi:10.1186/cc8096.
[54]
Salah, N.; Miller, N.J.; Paganga, G.; Tijburg, L.; Bolwell, G.P.; Rice-Evans, C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys 1995, 322, 339–346.
[55]
Unno, T.; Sakane, I.; Masumizu, T.; Kohno, M.; Kakuda, T. Antioxidant activity of water extracts of lagerstroemia speciosa leaves. Biosci. Biotechnol. Biochem 1997, 61, 1772–1774.
[56]
Virgili, F.; Kim, D.; Packer, L. Procyanidins extracted from pine bark protect alpha-tocopherol in ECV 304 endothelial cells challenged by activated raw 264.7 macrophages: Role of nitric oxide and peroxynitrite. Fed. Eur. Biochem. Soc. Lett 1998, 431, 315–318.
[57]
Yang, F.; de Villiers, W.J.; McClain, C.J.; Varilek, G.W. Green tea polyphenols block endotoxin-induced tumor necrosis factor-production and lethality in a murine model. J. Nutr 1998, 128, 2334–2340.
[58]
Wakabayashi, I. Inhibitory effects of baicalein and wogonin on lipopolysaccharide-induced nitric oxide production in macrophages. Basic Clin. Pharmacol. Toxicol 1999, 84, 288–291.
[59]
Bauer, L.; Kohlich, A.; Hirschwehr, R.; Siemann, U.; Ebner, H.; Scheiner, O.; Kraft, D.; Ebner, C. Food allergy to honey: Pollen or bee products? Characterization of allergenic proteins in honey by means of immunoblotting. J. Allergy Clin. Immunol 1996, 97, 65–73.
[60]
Bradley, P.P.; Christensen, R.D.; Rothstein, G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 1982, 60, 618–622.