全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microsatellite Development for an Endangered Bream Megalobrama pellegrini (Teleostei, Cyprinidae) Using 454 Sequencing

DOI: 10.3390/ijms13033009

Keywords: high-throughput microsatellite isolation, next-generation sequencing, breams, cross-amplification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Megalobrama pellegrini is an endemic fish species found in the upper Yangtze River basin in China. This species has become endangered due to the construction of the Three Gorges Dam and overfishing. However, the available genetic data for this species is limited. Here, we developed 26 polymorphic microsatellite markers from the M. pellegrini genome using next-generation sequencing techniques. A total of 257,497 raw reads were obtained from a quarter-plate run on 454 GS-FLX titanium platforms and 49,811 unique sequences were generated with an average length of 404 bp; 24,522 (49.2%) sequences contained microsatellite repeats. Of the 53 loci screened, 33 were amplified successfully and 26 were polymorphic. The genetic diversity in M. pellegrini was moderate, with an average of 3.08 alleles per locus, and the mean observed and expected heterozygosity were 0.47 and 0.51, respectively. In addition, we tested cross-species amplification for all 33 loci in four additional breams: M. amblycephala, M. skolkovii, M. terminalis, and Sinibrama wui. The cross-species amplification showed a significant high level of transferability (79%–97%), which might be due to their dramatically close genetic relationships. The polymorphic microsatellites developed in the current study will not only contribute to further conservation genetic studies and parentage analyses of this endangered species, but also facilitate future work on the other closely related species.

References

[1]  Luo, Y.L. A revision of fishes of the cyprinid genus Megalobrama. Acta Hydrobiol. Sin 1990, 14, 159–165.
[2]  Chen, Y.Y. Fauna Sinica, Osteichthyes Cypriniformes II (in Chinese); Science Press: Beijing, China, 1998.
[3]  Park, Y.S.; Chang, J.B.; Lek, S.; Cao, W.X.; Brosse, S. Conservation strategies for endemic fish species threatened by the Three Gorges Dam. Conserv. Biol 2003, 17, 1748–1758.
[4]  Liu, J. A quantitative analysis on threat and priority of conservation order of the endemic fishes in upper reaches of the Yangtze River. China Environ. Sci 2004, 24, 395–399.
[5]  Li, W.J.; Wang, J.W.; Xie, C.X.; Tan, D.Q. Reproductive biology and spawning habitats of Megalobrama pellegrini, an endemic fish in upper-reaches of Yangtze River basin. Acta Ecol. Sin 2007, 27, 1917–1925.
[6]  Gao, X.; Tan, D.Q.; Liu, H.Z.; Wang, J.W. Exploitation status and conservation of a population of Megalobrama pellegrini in Longxi river in the upper Yangtze River basin. Sichuan J. Zool 2009, 28, 329–333.
[7]  Wang, J.W.; Tan, D.Q.; Li, W.J. Preliminary studies on artificial propagation and embryonic development of Megalobrama pellegrini. Acta Hydrobiol. Sin 2005, 29, 130–136.
[8]  Li, W.J.; Wang, J.W.; Tan, D.Q.; Dan, S.G. Observation on postembryonic development of Megalobrama pellegrini. J. Fish. China 2005, 29, 729–737.
[9]  Gao, X.; Liu, H.Z.; Wang, J.W. Applicaiton of logistic regression analysis on study of life history pattern of Megalobrama pellegrini. Sichuan. J. Zool 2008, 27, 506–509.
[10]  Zhu, Z.Q.; Li, Y.; Zheng, K.D.; Zhu, X.Z.; Liu, B.; Zhang, L. Cloning and sequence analysis of encoding cDNA sequence of Neuropeptide Y in Megalobrama pellegrini. Freshw. Fish 2009, 39, 14–17.
[11]  Liu, H.Z.; Wang, Y.P. Studies on genetic structure and null allele in a natural population of Megalobrama pellegrini. Acta Hydrobiol. Sin 1997, 21, 194–196.
[12]  Xu, W.; Xiong, B.X. Advances in the research on genus Megalobrama in China. J. Hydroecol 2008, 1, 7–11.
[13]  Cai, M.J.; Zhang, M.Y.; Zeng, Q.L.; Liu, H.Z. A study on the morphological of the genus Megalobrama. Acta Hydrobiol. Sin 2001, 25, 631–635.
[14]  Mittal, N.; Dubey, A. Microsatellite markers-a new practice of DNA based markers in molecular genetics. Phcog. Rev 2009, 3, 235–246.
[15]  Jones, A.G.; Small, C.M.; Paczolt, K.A.; Ratterman, N.L. A practical guide to methods of parentage analysis. Mol. Ecol. Resour 2010, 10, 6–30.
[16]  Goldstein, D.B.; Schlotterer, C. Microsatellites, Evolution and Applications; Oxford University Press: Oxford, UK, 1999.
[17]  Ellegren, H. Microsatellites, simple sequences with complex evolution. Nat. Rev. Genet 2004, 5, 435–445.
[18]  Glenn, T.C.; Schable, N.A. Isolating Microsatellite DNA Loci. In Methods in Enzymology, Molecular Evolution, Producing the Biochemical Data, Part B; Zimmer, E.A., Roalson, E.H., Eds.; Academic Press: San Diego, CA USA, 2005; pp. 202–222.
[19]  Abdelkrim, J.; Robertson, B.C.; Stanton, J.-A.L.; Gemmell, N.J. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 2009, 46, 185–191.
[20]  Allentoft, M.E.; Schuster, S.C.; Holdaway, R.N.; Hale, M.L.; McLay, E.; Oskam, C.; Gilbert, T.P.; Spencer, P.; Willerslev, E.; Bunce, M. Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. BioTechniques 2009, 46, 195–200.
[21]  Santana, Q.C.; Coetzee, M.P.A.; Steenkamp, E.T.; Mlonyeni, O.X.; Hammond, G.N.A.; Wingfield, M.J.; Wingfield, B.D. Microsatellite discovery by deep sequencing of enriched genomic libraries. BioTechniques 2009, 46, 217–223.
[22]  Castoe, T.A.; Poole, A.W.; Gu, W.J.; Jason de Koning, A.P.; Daza, J.M.; Smith, E.N.; Pollock, D.D. Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol. Ecol. Resour 2009, 10, 341–347.
[23]  Csencsics, D.; Brodbeck, S.; Holderegger, R. Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) uing next-generation sequencing technology. J. Hered 2010, 101, 789–793.
[24]  Saarinen, E.V.; Austin, J.D. When technology meets conservation, increased microsatellite marker production using 454 genome sequencing on the endangered okaloosa darter (Etheostoma okaloosae). J. Hered 2010, 101, 784–788.
[25]  Gardner, M.G.; Fitch, A.J.; Bertozzi, T.; Lowe, A.J. Rise of the machines—Recommendations for ecologists when using next generation sequencing for microsatellite development. Mol. Ecol. Resour 2011, 11, 1093–1101.
[26]  McCulloch, E.S.; Stevens, R.D. Rapid development and screening of microsatellite loci for Artibeus lituratus and their utility for six related species within Phyllostomidae. Mol. Ecol. Resour 2011, 11, 903–913.
[27]  Perry, J.C.; Rowe, L. Rapid microsatellite development for water striders by next-generation sequencing. J. Hered 2011, 102, 125–129.
[28]  Wood, R.; Weyeneth, N.; Appleton, B. Development and characterisation of 20 microsatellite loci isolated from the large bent-wing bat, Miniopterus schreibersii (Chiroptera, Miniopteridae) and their cross-taxa utility in the family Miniopteridae. Mol. Ecol. Resour 2011, 11, 675–685.
[29]  Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Leger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F.; Petit, R.J. Current trends in microsatellite genotyping. Mol. Ecol. Resour 2011, 11, 591–611.
[30]  Li, W.T.; Liao, X.L.; Yu, X.M.; Wang, D.; Tong, J.G. Isolation and characterization of polymorphic microsatellite loci in Wuchang bream (Megalobrama amblycephala). Mol. Ecol. Notes 2007, 7, 771–773.
[31]  Lai, Y.; Sun, F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol 2003, 20, 2123–2131.
[32]  Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet 1980, 32, 314–331.
[33]  Aliah, R.S.; Takagi, M.; Dong, S.; Teoh, C.T.; Taniguchi, N. Isolation and inheritance of microsatelllite markers in the common carp Cyprinus carpio. Fish Sci 1999, 65, 235–239.
[34]  Du, C.B.; Sun, X.W.; Lou, Y.D.; Shen, J.B. The genetic heterozygosity analysis to wild carp and two cultivated strains of common carp using microsatellite technique. J. Shanghai Fish Univ 2000, 9, 285–289.
[35]  Wang, W.; You, F.; Gao, T.X.; Zhang, P.J. Genetic variations at ten microsatellite loci in natural and cultured stocks of left-eyed flounder Paralichthys olivaceu in Shandong coastal waters. Oceanol. Limnol. Sin 2004, 35, 530–537.
[36]  Sumantadinata, K.; Taniguchi, N. Comparison of electrophoretic allele frequencies and genetic variability of common carp stocks from Indonesia and Japan. Aquaculture 1990, 88, 263–271.
[37]  Liao, X.L.; Yu, X.M.; Chang, J.B.; Tong, J.G. Polymorphic microsatellites in largemouth bronze gudgeon (Coreius guichenoti) developed from repeat-enriched libraries and cross-species amplifications. Mol. Ecol. Notes 2007, 7, 1104–1107.
[38]  Liao, X.L.; Wang, D.; Yu, X.M.; Li, W.T.; Cheng, L.; Wang, J.W.; Tong, J.G. Characterization of novel microsatellite loci in rare minnow (Gobiocypris rarus) and amplification in closely related species in Gobioninae. Conserv. Genet 2007, 8, 1003–1007.
[39]  Yue, H.; Yuan, H.; Zhang, X.Y. Fifteen novel polymorphic microsatellites in rock carp, Procypris rabaudi (Tchang), an endemic fish species in the upper reaches of the Yangtze River drainage. Conserv. Genet 2009, 10, 539–542.
[40]  Zhu, D.; Chang, J.B. Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI). Ecol. Indic 2008, 8, 564–572.
[41]  Faircloth, B.C. Msatcommander, detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour 2008, 8, 92–94.
[42]  Yeh, F.C.; Yang, R.C.; Boyle, T. POPGENE Microsoft Windows-based Freeware for Population Genetic Analysis Release 1.31; University of Alberta: Edmonton, Canada, 1999.
[43]  Excoffier, L.; Laval, G.; Schneider, S. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinforma. Online 2005, 1, 47–50.
[44]  Kalinowski, S.; Taper, M.; Marshall, T. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. Notes 2007, 16, 1099–1106.
[45]  Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. MICRO-CHECKER, software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133