全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using Physiologically-Based Pharmacokinetic Models to Incorporate Chemical and Non-Chemical Stressors into Cumulative Risk Assessment: A Case Study of Pesticide Exposures

DOI: 10.3390/ijerph9051971

Keywords: cumulative exposure, risk assessment, pesticides, health disparities, diet

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cumulative risk assessment has been proposed as an approach to evaluate the health risks associated with simultaneous exposure to multiple chemical and non-chemical stressors. Physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) models can allow for the inclusion and evaluation of multiple stressors, including non-chemical stressors, but studies have not leveraged PBPK/PD models to jointly consider these disparate exposures in a cumulative risk context. In this study, we focused on exposures to organophosphate (OP) pesticides for children in urban low-income environments, where these children would be simultaneously exposed to other pesticides (including pyrethroids) and non-chemical stressors that may modify the effects of these exposures (including diet). We developed a methodological framework to evaluate chemical and non-chemical stressor impacts on OPs, utilizing an existing PBPK/PD model for chlorpyrifos. We evaluated population-specific stressors that would influence OP doses or acetylcholinesterase (AChE) inhibition, the relevant PD outcome. We incorporated the impact of simultaneous exposure to pyrethroids and dietary factors on OP dose through the compartments of metabolism and PD outcome within the PBPK model, and simulated combinations of stressors across multiple exposure ranges and potential body weights. Our analyses demonstrated that both chemical and non-chemical stressors can influence the health implications of OP exposures, with up to 5-fold variability in AChE inhibition across combinations of stressor values for a given OP dose. We demonstrate an approach for modeling OP risks in the presence of other population-specific environmental stressors, providing insight about co-exposures and variability factors that most impact OP health risks and contribute to children’s cumulative health risk from pesticides. More generally, this framework can be used to inform cumulative risk assessment for any compound impacted by chemical and non-chemical stressors through metabolism or PD outcomes.

References

[1]  National Environmental Justice Advisory Council. Ensuring Risk Reduction in Communities with Multiple Stressors: Environmental Justice and Cumulative Risks/Impacts; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
[2]  Alexeef, G.; Faust, J.; Meehan, L.; Milanes, C.; Randles, K.; Zeise, L. Cumulative Impacts: Building a Scientific Foundation (Public Review Draft); California Environmental Protection Agency, California Office of Environmental Health Hazard Assessment: Sacramento, CA, USA, 2010.
[3]  New Jersey Department of Environmental Protection. A Preliminary Screening Method to Estimate Cumulative Environmental Impacts; New Jersey Department of Environmental Protection: Trenton, NJ, USA, 2009.
[4]  USEPA. Framework for Cumulative Risk Assessment; Risk Assessment Forum: Washington, DC, USA, 2003.
[5]  Levy, J.I. Is epidemiology the key to cumulative risk assessment? Risk Anal. 2008, 28, 1507–1513, doi:10.1111/j.1539-6924.2008.01121.x.
[6]  National Research Council. Science and Decisions: Advancing Risk Assessment; National Research Council: Washington, DC, USA, 2009.
[7]  Morello-Frosch, R.; Shenassa, E.D. The environmental “Riskscape” and social inequality: Implications for explaining maternal and child health disparities. Environ. Health Perspect. 2006, 114, 1150–1153, doi:10.1289/ehp.8930.
[8]  Food Quality Protection Act of 1996. Public Law 104-170, 1996. Code of Federal Regulations 1996. Section 408, Title IV.
[9]  Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Chuang, J.C.; Lordo, R.A.; Wilson, N.K.; Lyu, C.; Brinkman, M.; Morse, N.; Chou, Y.L.; et al. Children’s Total Exposure to Persistent Pesticides and Other Persistent Organic Pollutants; USEPA, Office of Research and Development, National Exposure Research Laboratory: Research Triangle Park, NC, USA, 2002.
[10]  USEPA. Revised Organophosphorus Pesticide Cumulative Risk Assessment; Office of Pesticide Programs: Washington, DC, USA, 2002.
[11]  Bosgra, S.; van der Voet, H.; Boon, P.E.; Slob, W. An integrated probabilistic framework for cumulative risk assessment of common mechanism chemicals in food: An example with organophosphorus pesticides. Regul. Toxicol. Pharmacol. 2009, 54, 124–133, doi:10.1016/j.yrtph.2009.03.004.
[12]  Julien, R.; Adamkiewicz, G.; Levy, J.I.; Bennett, D.; Nishioka, M.; Spengler, J.D. Pesticide loadings of select organophosphate and pyrethroid pesticides in urban public housing. J. Expo Sci. Environ. Epidemiol. 2008, 18, 167–174, doi:10.1038/sj.jes.7500576.
[13]  Levy, J.I.; Welker-Hood, L.K.; Clougherty, J.E.; Dodson, R.E.; Steinbach, S.; Hynes, H.P. Lung function, asthma symptoms, and quality of life for children in public housing in Boston: A case-series analysis. Environ. Health 2004, 3.
[14]  Timchalk, C.; Nolan, R.J.; Mendrala, A.L.; Dittenber, D.A.; Brzak, K.A.; Mattsson, J.L. A physiologically based pharmacokinetic and pharmacodynamic (pbpk/pd) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol. Sci. 2002, 66, 34–53, doi:10.1093/toxsci/66.1.34.
[15]  Mutch, E.; Williams, F.M. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes p450 in human liver. Toxicology 2006, 224, 22–32, doi:10.1016/j.tox.2006.04.024.
[16]  Scollon, E.J.; Starr, J.M.; Godin, S.J.; DeVito, M.J.; Hughes, M.F. In vitro metabolism of pyrethroid pesticides by rat and human hepatic microsomes and cytochrome p450 isoforms. Drug Metab. Dispos. 2009, 37, 221–228, doi:10.1124/dmd.108.022343.
[17]  He, F.; Chen, S.; Tang, X.; Gan, W.; Tao, B.; Wen, B. Biological monitoring of combined exposure to organophosphates and pyrethroids. Toxicol. Lett. 2002, 134, 119–124, doi:10.1016/S0378-4274(02)00180-7.
[18]  Chen, E.; Schreier, H.M.; Strunk, R.C.; Brauer, M. Chronic traffic-related air pollution and stress interact to predict biologic and clinical outcomes in asthma. Environ. Health Perspect. 2008, 116, 970–975, doi:10.1289/ehp.11076.
[19]  Marin, T.J.; Chen, E.; Munch, J.A.; Miller, G.E. Double-exposure to acute stress and chronic family stress is associated with immune changes in children with asthma. Psychosom. Med. 2009, 71, 378–384, doi:10.1097/PSY.0b013e318199dbc3.
[20]  Clougherty, J.E.; Levy, J.I.; Kubzansky, L.D.; Ryan, P.B.; Suglia, S.F.; Canner, M.J.; Wright, R.J. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ. Health Perspect. 2007, 115, 1140–1146, doi:10.1289/ehp.9863.
[21]  Suglia, S.F.; Ryan, L.; Laden, F.; Dockery, D.W.; Wright, R.J. Violence exposure, a chronic psychosocial stressor, and childhood lung function. Psychosom. Med. 2008, 70, 160–169, doi:10.1097/PSY.0b013e318160687c.
[22]  Wright, R.J. Health effects of socially toxic neighborhoods: The violence and urban asthma paradigm. Clin. Chest Med. 2006, 27, 413–421, doi:10.1016/j.ccm.2006.04.003.
[23]  Agarwal, S.K.; Marshall, G.D., Jr. Glucocorticoid-induced type 1/type 2 cytokine alterations in humans: A model for stress-related immune dysfunction. J. Interferon. Cytokine Res. 1998, 18, 1059–1068, doi:10.1089/jir.1998.18.1059.
[24]  Shigemi, J.; Mino, Y.; Tsuda, T. The role of perceived job stress in the relationship between smoking and the development of peptic ulcers. J. Epidemiol. 1999, 9, 320–326, doi:10.2188/jea.9.320.
[25]  Jortner, B.S. Effect of stress at dosing on organophosphate and heavy metal toxicity. Toxicol. Appl. Pharmacol. 2008, 233, 162–167, doi:10.1016/j.taap.2008.01.045.
[26]  Irigoyen, M.; Glassman, M.E.; Chen, S.; Findley, S.E. Early onset of overweight and obesity among low-income 1- to 5-year olds in New York City. J. Urban Health 2008, 85, 545–554, doi:10.1007/s11524-008-9285-8.
[27]  Langevin, D.D.; Kwiatkowski, C.; McKay, M.G.; Maillet, J.O.; Touger-Decker, R.; Smith, J.K.; Perlman, A. Evaluation of diet quality and weight status of children from a low socioeconomic urban environment supports “at risk” classification. J. Am. Diet. Assoc. 2007, 107, 1973–1977, doi:10.1016/j.jada.2007.08.008.
[28]  Yang, C.S.; Yoo, J.S. Dietary effects on drug metabolism by the mixed-function oxidase system. Pharmacol. Ther. 1988, 38, 53–72, doi:10.1016/0163-7258(88)90102-7.
[29]  Kaizer, R.R.; da Silva, A.C.; Morsch, V.M.; Correa, M.C.; Schetinger, M.R. Diet-induced changes in ache activity after long-term exposure. Neurochem. Res. 2004, 29, 2251–2255, doi:10.1007/s11064-004-7033-3.
[30]  Guengerich, F.P. Effects of nutritive factors on metabolic processes involving bioactivation and detoxication of chemicals. Annu. Rev. Nutr. 1984, 4, 207–231, doi:10.1146/annurev.nu.04.070184.001231.
[31]  Ioannides, C.; Parke, D.V. Effect of diet on the metabolism and toxicology of drugs. J. Hum. Nutr. 1979, 33, 357–366. 115915
[32]  Anderson, K.E.; Kappas, A. Dietary regulation of cytochrome p450. Annu. Rev. Nutr. 1991, 11, 141–167, doi:10.1146/annurev.nu.11.070191.001041.
[33]  Bidlack, W.R.; Smith, C.H. The effect of nutritional factors on hepatic drug and toxicant metabolism. J. Am. Diet. Assoc. 1984, 84, 892–898. 6379020
[34]  Parke, D.V.; Ioannides, C. The role of nutrition in toxicology. Annu. Rev. Nutr. 1981, 1, 207–234, doi:10.1146/annurev.nu.01.070181.001231.
[35]  Foxenberg, R.J.; McGarrigle, B.P.; Knaak, J.B.; Kostyniak, P.J.; Olson, J.R. Human hepatic cytochrome p450-specific metabolism of parathion and chlorpyrifos. Drug Metab. Dispos. 2007, 35, 189–193. 17079358
[36]  Clinical Growth Charts. Available online: http://www.cdc.gov/growthcharts/clinical_charts.htm#Set2 (accessed on 10 February 2010).
[37]  Wason, S.C.; Julien, R.; Perry, M.J.; Smith, T.J.; Levy, J.I. Modeling exposures to organophosphates and pyrethroids for children living in an urban low-income environment. Environ. Res. 2012. under review.
[38]  Wason, S.C. Evaluating Heterogeneity in Pesticide Exposure and Risk for Children in an Urban Low-Income Environment. Ph.D. Thesis, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA, 2010.
[39]  Tan, Y.M.; Clewell, H.; Campbell, J.; Andersen, M. Evaluating pharmacokinetic and pharmacodynamic interactions with computational models in supporting cumulative risk assessment. Int. J. Environ. Res. Public Health 2011, 8, 1613–1630, doi:10.3390/ijerph8051613.
[40]  Mirfazaelian, A.; Kim, K.B.; Anand, S.S.; Kim, H.J.; Tornero-Velez, R.; Bruckner, J.V.; Fisher, J.W. Development of a physiologically based pharmacokinetic model for deltamethrin in the adult male Sprague-Dawley rat. Toxicol. Sci. 2006, 93, 432–442, doi:10.1093/toxsci/kfl056.
[41]  Godin, S.J.; DeVito, M.J.; Hughes, M.F.; Ross, D.G.; Scollon, E.J.; Starr, J.M.; Setzer, R.W.; Conolly, R.B.; Tornero-Velez, R. Physiologically based pharmacokinetic modeling of deltamethrin: Development of a rat and human diffusion-limited model. Toxicol. Sci. 2010, 115, 330–343, doi:10.1093/toxsci/kfq051. 20200215
[42]  Perry, M.J.; Venners, S.A.; Barr, D.B.; Xu, X. Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reprod. Toxicol. 2007, 23, 113–118, doi:10.1016/j.reprotox.2006.08.005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133