全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

DOI: 10.3390/ijerph9051887

Keywords: AnnAGNPS, modeling, Daning River watershed, Three-Gorge, erosion and sediment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs) and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS), have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km 2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R 2 of 0.94) and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R 2 of 0.93). Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of ?0.34) and 2003–2004 (relative error of 0.18) at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km ?2·y ?1). However, 8% of the watershed had soil erosion of exceeding 5,000 t·km ?2·y ?1. Sloping areas and low coverage areas are the main source of soil loss in the watershed.

References

[1]  Angima, S.D.; Stott, D.E.; O’Neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308, doi:10.1016/S0167-8809(03)00011-2.
[2]  Baginska, B.; Milne-Home, W. Parameter Sensitivity in Calibration and Validation of Annualized Agricultural Nonpoint Source Model. In Calibration of Watershed Models; Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., Turcotte, R., Eds.; American Geophysical Union: Washington, DC, USA, 2008.
[3]  Cronshey, R.G.; Theurer, F.G. AnnAGNPS Non-Point Pollutant Loading Model. In Proceedings of the 1st Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998.
[4]  Arnold, J.G.; Allen, P.M. Automated methods for estimating baseflow and ground water recharge from streamflow records. J. Am. Water Resour. Assoc. 1999, 35, 411–424, doi:10.1111/j.1752-1688.1999.tb03599.x.
[5]  Bingner, R.L.; Theurer, F.D.; Yuan, Y. AnnAGNPS Technical Processes 2003. Available online: http://www.ars.usda.gov/Research/docs.htm?docid=5199 (accessed on 10 March 2010).
[6]  Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS—A nonpoint-source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173.
[7]  Bingner, R.L.; Darden, R.W.; Theurer, F.D.; Garbrecht, J. GIS-Based Generation of AGNPS Watershed Routing and Channel Parameters; American Society for Aerospace Education: St. Joseph, MI, USA, 1997; pp. 29–32. ASAE paper No. 97–2008.
[8]  Choi, K.S.; Blood, E. Modeling developed coastal watersheds with the agricultural non-point source model. J. Am. Water Resour. Assoc. 1999, 35, 233–244, doi:10.1111/j.1752-1688.1999.tb03585.x.
[9]  Perrone, J.; Madramootoo, C.A. Use of AGNPS for watershed modeling in Quebec. Trans. Am. Soc. Agric. Eng. 1997, 40, 1349–1354.
[10]  Lenzi, M.A.; Di-Luzio, M. Surface runoff, soil erosion, and water quality modeling in the Alpone watershed using AGNPS integrated with a geographic information system. Eur. J. Agron. 1997, 6, 1–14, doi:10.1016/S1161-0301(96)02001-1.
[11]  Grunwald, S.; Norton, L.D. An AGNPS-based runoff and sediment yield model for two small watersheds in Germany. Trans. Am. Soc. Agric. Eng. 1999, 42, 1723–1731.
[12]  Yuan, Y.P.; Bingner, R.L.; Rebich, R.A. Evaluation of AnnaGNPS on Mississippi Delta MSEA watersheds. Trans. ASAE 2001, 44, 1183–1190.
[13]  Yuan, Y.P.; Bingner, R.L.; Rebich, R.A. Evaluation of AnnAGNPS nitrogen loading in an agricultural watershed. J. Am. Water Resour. Assoc. 2003, 39, 457–466, doi:10.1111/j.1752-1688.2003.tb04398.x.
[14]  Yuan, Y.; Locke, M.A.; Bingner, R.L. Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment. J. Soil Water Conserv. 2008, 63, 542–551, doi:10.2489/jswc.63.6.542.
[15]  Yuan, Y.; Mehaffey, M.H.; Lopez, R.D.; Bingner, R.L.; Bruins, R.; Erickson, C.; Jackson, M.A. AnnAGNPS model application for nitrogen loading assessment for the future midwest landscape study. Water 2011, 3, 196–216, doi:10.3390/w3010196.
[16]  Polyakov, V.; Fares, A.; Kubo, D.; Jacobi, J.; Smith, C. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershe. Environ. Model. Software 2007, 22, 1617–1627, doi:10.1016/j.envsoft.2006.12.001.
[17]  Pease, L.M.; Oduor, P.; Padmanabhan, G. Estimating sediment, nitrogen, and phosphorous loads from the Pipestem Creek watershed, North Dakota, using AnnAGNPS. Comput. Geosci. 2010, 36, 282–291, doi:10.1016/j.cageo.2009.07.004.
[18]  Kliment, Z.; Kadlec, J.; Langhammer, J. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical erosion models. Catena 2008, 73, 286–299, doi:10.1016/j.catena.2007.11.005.
[19]  Shrestha, S.; Babel, M.S.; Das Gupta, A.; Kazama, F. Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environ. Model. Software 2006, 21, 961–975, doi:10.1016/j.envsoft.2005.04.007.
[20]  Shamshad, A.; Leow, C.S.; Ramlah, A.; Hussin, W.; Sanusi, S.A.M. Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions. Int. J. Appl. Earth Obs. Geoinf. 2007, 10, 239–252.
[21]  Sarangi, A.; Cox, C.A.; Madramootoo, C.A. Evaluation of the AnnAGNPS model for prediction of runoff and sediment yields in St Lucia watersheds. Biosystems Eng. 2007, 97, 241–256, doi:10.1016/j.biosystemseng.2007.02.015.
[22]  Licciardello, F.; Zema, D.A.; Zimbone, S.A.; Bingner, R.L. Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 1585–1593.
[23]  Zema, D.A.; Bingner, R.L.; Govers, G.; Licciardello, F.; Denisi, P.; Zimbone, S.M. Evaluation of runoff, peak flow and sediment yield for events simulated by the AnnAGNPS model in a Belgian agricultural watershed. Land Degrad. Dev. 2010, doi:10.1002/ldr.1068.
[24]  Baginska, B.; Milne-Home, W.; Cornish, P.S. Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environ. Model. Software 2003, 18, 801–808, doi:10.1016/S1364-8152(03)00079-3.
[25]  Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. Am. Soc. Agric. Biol. Eng. 2007, 50, 885–900.
[26]  Fan, L.L.; Shen, Z.Y.; Liu, R.M.; Gong, Y.W. Spatial distribution of non-point source pollution in daninghe watershed based on SWAT Model. Bull. Soil Water Conserv. 2008, 4, 133–137.
[27]  Ouyang, D.; Bartholic, J. Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. In Proceedings of the 22nd National Association of Environmental Professionals Conference, Orlando, FL, USA, 19–23 May 1997.
[28]  Ji, K. Sediment delivery ratio in the Upper Yangtze River. J. Sediment. Res. 2002, 1, 53–59.
[29]  Bingner, R.L.; Theurer, F.D. AnnAGNPS: Estimating Sediment Yield by Particle Size for Sheet and Rill Erosion. In Proceedings of the 7th Interagency Sedimentation Conference, Reno, NV, USA, 25–29 March 2001.
[30]  USDA Soil Conservation Service (SCS). National Engineering Handbook. Section 4: Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 1972.
[31]  Theurer, F.G.; Cronshey, R.G. AnnAGNPS—Reach Routing Processes. In Proceedings of 1st Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998.
[32]  Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture: Washington, DC, USA, 1997. USDA Griculture Handbook No. 703.
[33]  Theurer, F.G.; Clarke, C.D. Wash Load Component for Sediment Yield Modeling. In Proceedings of 5th Federal Interagency Sedimentation Conference, Las Vegas, NV, USA, 18–21 March 1991.
[34]  Einstein, H.A.; Chien, N. Second Approximation to the Solution of the Suspended Load Theory; University of California: Berkeley, CA, USA, 1954.
[35]  Johnson, G.L.; Daly, C.; Taylor, G.H.; Hanson, C.L. Spatial variability and interpolation of stochastic weather simulation model parameters. J. Appl.Meteorol. 2000, 39, 778–796, doi:10.1175/1520-0450(2000)039<0778:SVAIOS>2.0.CO;2.
[36]  Geter, W.F.; Theurer, F.D. AnnAGNPS-RUSLE Sheet and Rill Erosion. In Proceedings of the1st Federal Interagency Hydrologic Modeling Conference, Las Vegas, NV, USA, 19–23 April 1998.
[37]  Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1084.
[38]  Soil Survey Office in Sichuan Province of China. Soil in Sichuan; Sichuan Science and Technology Press: Chengdu, China, 1995.
[39]  Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating generatlized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036, doi:10.2136/sssaj1986.03615995005000040039x.
[40]  Sharply, A.N.; Williams, J.R. EPIC-Erosion Productivity Impact Culator: I. Model Documentation; USDA: Washington, DC, USA, 1990. USDA Technical Bulletin No. 1768.
[41]  USDA Soil Conservation Service (SCS). National Engineering Handbook. Section 4: Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 1985.
[42]  Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part I A discussion of principles. J. Hydrol. 1970, 10, 282–290, doi:10.1016/0022-1694(70)90255-6.
[43]  Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73, doi:10.1016/0169-7722(91)90038-3.
[44]  Arnold, J.G.; Allen, P.M.; Muttiah, R.; Bernhardt, G. Automated base-flow separation and recession analysis techniques. Ground Water 1995, 33, 1010–1018, doi:10.1111/j.1745-6584.1995.tb00046.x.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133