The purpose of this study is to determine whether Hispanic ethnic concentration is associated with a higher prevalence of obesity and, if this relationship exists, whether it is affected by the socioeconomic environment. The study uses the Texas Behavioral Risk Factor Surveillance System (BRFSS) linked to 2000 census data to access the relationship between prevalence of obesity, Hispanic ethnic concentration, poverty and level of education at a county-level. The findings suggest that the association of Hispanic ethnic concentration and obesity varies by socioeconomic environment. Although little influence was observed for % poverty, the relationship between Hispanic ethnic concentration and obesity differed by county-level educational attainment. High proportion of residents with a bachelor’s degree is associated with a low prevalence of obesity; counties with both high % Hispanic and high % with Bachelor’s degrees had the lowest prevalence of obesity. Our results suggest that promoting and improving education, perhaps including training on healthful living, may serve as an effective means of curbing current obesity trends and associated health problems in Hispanic and possibly other ethnic communities.
References
[1]
Nelson, N.M.; Woods, C.B. Obesogenic environments: Are neighbourhood environments that limit physical activity obesogenic? Health Place 2009, 15, 917–924, doi:10.1016/j.healthplace.2009.02.001.
[2]
Black, J.L.; Macinko, J.; Dixon, L.B.; Fryer, G.E., Jr. Neighborhoods and obesity in New York City. Health Place 2010, 16, 489–499.
[3]
Lovasi, G.S.; Hutson, M.A.; Guerra, M.; Neckerman, K.M. Built environments and obesity in disadvantaged populations. Epidemiol. Rev. 2009, 31, 7–20.
[4]
Leslie, E.; Cerin, E.; Kremer, P. Perceived neighborhood environment and park use as mediators of the effect of area socio-economic status on walking behaviors. J. Phys. Act. Health 2010, 7, 802–810.
[5]
Coogan, P.F.; Cozier, Y.C.; Krishnan, S.; Wise, L.A.; Adams-Campbell, L.L.; Rosenberg, L.; Palmer, J.R. Neighborhood socioeconomic status in relation to 10-year weight gain in the Black Women’s Health Study. Obesity 2010, 18, 2064–2065.
[6]
Lee, R.E.; Mama, S.K.; McAlexander, K.P.; Adamus, H.; Medina, A.V. Neighborhood and PA: Neighborhood factors and physical activity in African American public housing residents. J. Phys. Act. Health 2011, 8, S83–S90.
[7]
Park, Y.; Neckerman, K.; Quinn, J.; Weiss, C.; Jacobson, J.; Rundle, A. Neighbourhood immigrant acculturation and diet among Hispanic female residents of New York City. Public Health Nutr. 2011, 14, 1593–1600.
[8]
Izumi, B.T.; Zenk, S.N.; Schulz, A.J.; Mentz, G.B.; Wilson, C. Associations between neighborhood availability and individual consumption of dark-green and orange vegetables among ethnically diverse adults in detroit. J. Am. Diet. Assoc. 2011, 111, 274–279.
[9]
Almeida, J.; Kawachi, I.; Molnar, B.E.; Subramanian, S.V. A multilevel analysis of social ties and social cohesion among Latinos and their neighborhoods: Results from Chicago. J. Urban Health 2009, 86, 745–759.
[10]
Eschbach, K.; Ostir, G.V.; Patel, K.V.; Markides, K.S.; Goodwin, J.S. Neighborhood context and mortality among older Mexican Americans: Is there a barrio advantage? Am. J. Public Health 2004, 94, 1807–1812.
[11]
Mair, C.; Diez Roux, A.V.; Osypuk, T.L.; Rapp, S.R.; Seeman, T.; Watson, K.E. Is neighborhood racial/ethnic composition associated with depressive symptoms? The multi-ethnic study of atherosclerosis. Soc Sci. Med. 2010, 71, 541–550.
[12]
Sheffield, K.M.; Peek, M.K. Neighborhood context and cognitive decline in older Mexican Americans: Results from the hispanic established populations for epidemiologic studies of the elderly. Am. J. Epidemiol. 2009, 169, 1092–1101.
[13]
Cagney, K.A.; Browning, C.R.; Wallace, D.M. The latino paradox in neighborhood context: The case of asthma and other respiratory conditions. Am. J. Public Health 2007, 97, 919–925.
[14]
Do, D.P.; Dubowitz, T.; Bird, C.E.; Lurie, N.; Escarce, J.J.; Finch, B.K. Neighborhood context and ethnicity differences in body mass index: A multilevel analysis using the NHANES III survey (1988-1994). Econ. Hum. Biol. 2007, 5, 179–203.
[15]
Markides, K.S.; Eschbach, K. Aging, migration, and mortality: Current status of research on the Hispanic paradox. J. Gerontol. B Psychol. Sci. Soc. Sci. 2005, 60, 68–75.
[16]
McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48.
[17]
Fernald, L.C.H. Socio-economic status and body mass index in low-income Mexican adults. Soc. Sci. Med. 2007, 64, 2030–2042.
[18]
Barrington, D.S.; Baquero, M.C.; Borrel, L.N.; Crawford, N.D. Racial/Ethnic disparities in obesity among us-born and foreign-born adults by sex and education. Obesity 2010, 18, 422–424.
[19]
Prevalence of Obesity (BMI 30.0 and over) Texas and Selected Counties. Texas Behavioral Risk Factor Surveillance System, Statewide BRFSS Survey, 2000-2009 Combine. Prepared by Texas Behavioral Surveillance System, Center for Health Statistics, Texas Department of State Health Services: Austin, TX, USA, 2011.
[20]
Bunnell, R.; O’Neil, D.; Soler, R.; Payne, R.; Giles, W.H.; Collins, J.; Bauer, U. Communities putting prevention to work program group. Fifty communities putting prevention to work: Accelerating chronic disease prevention through policy, systems and environmental change. J. Community Health 2012, doi:10.1007/s10900-012-9542-3.
[21]
Centers for Disease Control. Communities Putting Prevention to Work: CDC awards $372.8 Million to 44 Communities. 2012. Available online: http://www.cdc.gov/features/chronicpreventiongrants/ (accessed on 10 April 2012).
[22]
U.S. Census Bureau. American Fact Finder2. Quick Tables. 2000. Available online: http://factfinder2.census.gov (accessed on 10 March 2011).
[23]
STATA 11 S. StataCorp, College Station, TX, USA, 2009.
[24]
ArcGI. Esri, Riverside, CA, USA, 2010.
[25]
Texas State Demographer. County and Equivalent (Census 2000) Shapefiles. 2000. Available online: http://txsdc.utsa.edu/txdata/shapefiles/state_shape2009.php (accessed on 29 March 2010).
[26]
Fisher-Hoch, S.; Rentfro, A.R.; Salinas, J.J.; Pérez, A; Brown, H.S.; Reininger, B.M.; Restrepo, B.I.; Wilson, J.G.; Hossain, M.M.; Rahbar, M.H.; et al. Socioeconomic status and prevalence of obesity and diabetes in a Mexican American community, Cameron County, Texas. Prev. Chronic Dis. 2010, 7, A53.
[27]
Tian, N.; Wilson, J.G.; Zhan, F.B. Spatial association of racial/ethnic disparities between late-stage diagnosis and mortality for female breast cancer: Where to intervene? Int. J. Health Geogr. 2011, 10, 24, doi:10.1186/1476-072X-10-24.
[28]
Montez, J.K.; Eschbach, K. Country of birth and language are uniquely associated with intakes of fat, fiber, and fruits and vegetables among Mexican-American women in the United States. J. Am. Diet. Assoc. 2008, 108, 473–480.
[29]
Montoya, J.A.; Salinas, J.J.; Barroso, C.S.; Mitchell-Bennett, L.; Reininger, B. Nativity and nutritional behaviors in the Mexican origin population living in the U.S.-Mexico border region. J. Immigr. Minor. Health 2011, 13, 94–100, doi:10.1007/s10903-010-9342-8.
[30]
Park, Y.; Neckerman, K.M.; Quinn, J.; Weiss, C.; Rundle, A. Place of birth, duration of residence, neighborhood immigrant composition and body mass index of New York City. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 19.
[31]
Wen, M.; Maloney, T.N. Latino residential isolation and the risk of obesity in Utah: The role of neighborhood socioeconomic, built-environmental, and subcultural context. J. Immigr. Minor. Health 2011, 13, 1134–1141.
[32]
Crimmins, E.M.; Kim, J.K.; Seeman, T.E. Poverty and biological risk: The earlier “aging” of the poor. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 286–292.
[33]
Sánchez-Vaznaugh, E.V.; Kawachi, I.; Subramanian, S.V.; Sánchez, B.N.; Acevedo-Garcia, D. Do Socioeconomic gradients in body mass index vary by race/ethnicity, gender, and birthplace? Am. J. Epidemiol. 2009, 169, 1102–1112, doi:10.1093/aje/kwp027.
[34]
Schwarte, L.; Samuels, S.E.; Capitman, J.; Ruwe, M.; Boyle, M.; Flores, G. The central california regional obesity prevention program: Changing nutrition and physical activity environments in California’s Heartland. Am. J. Public Health 2010, 100, 124–128.
[35]
Bader, M.D.M.; Purciel, M.; Yousefzadeh, P.; Neckerman, K.M. Disparities in neighborhood food environments: Implications of measurement strategies. Econ. Geogr. 2010, 86, 409–430.
[36]
Mowafi, M.; Khadr, Z.; Subramanian, S.V.; Bennett, G.; Hill, A.; Kawachi, I. Are neighborhood education levels associated with BMI among adults in Cairo, Egypt? Soc. Sci. Med. 2011, 72, 1274–1283, doi:10.1016/j.socscimed.2011.01.032.
[37]
Erinosho, T.O.; Thompson, O.M.; Moser, R.P.; Yaroch, A.L. Fruit and vegetable intake of U.S. adults: Comparing intake by mode of survey administration. J. Am. Diet. Assoc. 2011, 111, 408–413, doi:10.1016/j.jada.2010.11.013.
[38]
Carlson, S.A.; Guide, R.; Schmid, T.L.; Moore, L.V.; Barradas, D.T.; Fulton, J.E. Public support for street-scale urban design practices and policies to increase physical activity. J. Phys. Act. Health 2011, 8, S125–S134.
[39]
Schoeni, R.F.; Dow, W.H.; Miller, W.D.; Pamuk, E.R. The Economic value of improving the health of disadvantaged Americans. Am. J. Prev. Med. 2011, 40, S67–S72.