全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Current Status of Antibiograms of Listeria ivanovii and Enterobacter cloacae Isolated from Ready-To-Eat Foods in Alice, South Africa

DOI: 10.3390/ijerph9093101

Keywords: foodborne pathogens, Listeria ivanovii, Enterobacter cloacae, antibiotic resistance, minimum inhibitory concentration, South Africa

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study assessed the antimicrobial susceptibility of 51 Listeria ivanovii and 33 Enterobacter cloacae strains isolated from various ready-to-eat foods sold in Alice, South Africa. Isolates were identified using standard microbiological tests and further confirmed using API 20E and API Listeria kits. The disc diffusion technique was used to screen for antimicrobial susceptibility against 15 antimicrobials; minimum inhibitory concentration of five antibiotics was determined by the broth dilution method. All the strains of E . cloacae (100%) and 96% of L. ivanovii isolates were resistant to at least four or more of the antibiotics; nineteen antibiotypes were obtained based on the antibiotics used in the study. Antibiotype A5: A R PG R VA R E R AP R was predominant in both L. ivanovii (23.5%) and E. cloacae (57.5%) isolates. Marked susceptibility of Listeria ivanovii was observed against chloramphenicol, ciprofloxacin, streptomycin and trimethoprim/sulfamethoxazole (100%) each while E. cloacae registered 100% susceptibility to ciprofloxacin only. Various percentages of susceptibility was reported to chloramphenicol and gentamicin (91%) each, nalidixic acid (97%) and streptomycin (94%). The MIC 90 ranged from 0.004–7.5 μg/mL with E. cloacae being the most susceptible organism. The study demonstrated the presence of multi-resistant strains of bacteria in ready-to-eat-foods and speculates that these foods could serve as important vehicles transmitting multi-resistant bacteria to humans.

References

[1]  Collignon, P.; Powers, J.H.; Tom, M.C.; Aidara-Kane, A.; Aarestrup, F.M. World health organization ranking of antimicrobials according to their importance in human medicine: A critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin. Infect. Dis. 2009, 49, 132–141, doi:10.1086/599374.
[2]  Threlfall, E.J.; Ward, L.R.; Frost, J.A.; Willshaw, G.A. The emergence and spread of antibiotic resistance in foodborne bacteria. Int. J. Food Microbiol. 2000, 62, 1–5, doi:10.1016/S0168-1605(00)00351-2.
[3]  Yucel, N.; Citak, S.; Onder, M. Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol. 2005, 22, 241–245, doi:10.1016/j.fm.2004.03.007.
[4]  White, D.G.; Zhao, S.; Simjee, S.; Wagner, D.D.; McDermott, P.F. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 2002, 4, 405–412, doi:10.1016/S1286-4579(02)01554-X.
[5]  WHO Fact Sheet 237: Food Safety and Foodborne Illness; World Health Organization: Geneva, Switzerland, 2002. Available online: www.who.int/mediacentre/factsheets/fs237/ (accessed on 12 April 2012).
[6]  Gashaw, A.; Kassu, A.; Moges, F.; Moges, T.; Kahsay, H. Prevalence of bacteria and intestinal parasites among Food-handlers in Gondar Town, Northwest Ethiopia. J. Health Popul. Nutr. 2008, 26, 451–455.
[7]  WHO Fact Sheet 237 Reviewed March. 2007. Available online: www.who.int/mediacentre/factsheets/fs237/ (accessed on 5 May 2012).
[8]  Adak, G.K.; Meakins, S.M.; Yip, H.; Lopman, B.A.; O’Brien, S.J. Disease risks from foods, England and Wales, 1996–200. Emerg. Infect. Dis. 2005, 11, 365–372.
[9]  Azziz-Baumgartner, E.; Lindblage, K.; Gieseker, K.; Rogres, H.S.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; Rubin, C.; Slutsker, L. Case-control study of an acute aflotoxicosis outbreak, Kenya, 2004. Environ. Health Perspect. 2005, 12, 1779–1782.
[10]  World Health Organization. Weekly Epidemiological Record, 2006. Available online: http://www.who.int/wer/2006/wer8131.pdf (accessed on 27 August 2012).
[11]  World Health Organization. Cholera in Zimbabwe. 2009. Available online: http://www.who.int/csr/don/2009_06_09/en/index.html (accessed on 27 August 2012).
[12]  M?lbak, K. Human health consequences of antimicrobial drug resistant Salmonella and other foodborne pathogens. Clin. Infect. Dis. 2005, 41, 1613–1620, doi:10.1086/497599.
[13]  Angulo, F.J.; Nargund, V.N.; Chiller, T.C. Evidence of an association between use of antimicrobial agents in food animals and antimicrobial resistance among bacteria isolated from humans and the human health consequences of such resistance. J. Vet. Med. 2004, 51, 374–379, doi:10.1111/j.1439-0450.2004.00789.x.
[14]  Guillet, C.; Lambert, O.J.; Monnier, A.; Leclerecq, A.; Mechai, F.; Brunnel, M.F.; Scortti, M.; Disson, O.; Berche, P.; Boland, J.V.; et al. Human Listeriosis caused by L. ivanovii. Emerg. Infect. Dis. 2010, 16, 136–138.
[15]  Salihu, M.D.; Junaidu, A.U.; Manga, S.B.; Gulumbe, M.L.A.; Magaji, A.; Ahmed, A.; Adamu, A.Y.; Shittu, A.; Balarabe, I. Occurrence of Listeria monocytogenes in smoked fish in Sokoto, Nigeria. Afri. J. Biotechnol. 2008, 7, 3082–3084.
[16]  Odjadjare, E.E.O.; Obi, C.L.; Okoh, A.I. Municipal wastewater effluents as a source of listerial pathogens in the aquatic milieu of the Eastern Cape Province of South Africa: A concern of public health importance. Int. J. Environ. Res. Public Health. 2010, 7, 2376–2394, doi:10.3390/ijerph7052376.
[17]  Osaili, T.M.; Alaboudi, A.R.; Nesir, E.A. Prevalance of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control 2011, 22, 586–590, doi:10.1016/j.foodcont.2010.10.008.
[18]  Nyenje, M.E.; Odjadjare, C.E.; Tanih, N.F., Green; Ndip, R.N. Foodborne pathogens recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern Cape Province, South Africa: Public health implications. Int. J. Environ. Res. Public Health. 2012, 9, 2608–2619, doi:10.3390/ijerph9082608.
[19]  Bertrand, S.; Huys, G.; Yde, M.; D’Haene, K.; Tardy, F.; Vrints, M.; Swings, J.; Collard, J.M. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J. Med. Microbiol. 2005, 54, 1151–1156, doi:10.1099/jmm.0.46142-0.
[20]  Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clinic. Microbiol. Infect. 2010, 16, 16–23, doi:10.1111/j.1469-0691.2009.03109.x.
[21]  Safdar, A.; Armstrong, D. Antimicrobial activities against 84 Listeria monocytogenes isolates from patients with systemic listeriosis at a Comprehensive cancer centre (1955–1997). J. Clin. Microbiol. 2003, 41, 483–485, doi:10.1128/JCM.41.1.483-485.2003.
[22]  Conter, M.; Paludi, D.; Zanardi, E.; Ghidini, S.; Vergara, A.; Ianieri, A. Characterization of antimicrobial resistance of foodborne Listeria monocytogenes. Int. J. Food Microbiol. 2009, 128, 497–500, doi:10.1016/j.ijfoodmicro.2008.10.018.
[23]  Charpentier, E.G.; Gerbaud, C.; Jacquet, J.; Courvalin, P. Incidence of antibiotic resistance in Listeria spp. J. Infect. Dis. 1995, 172, 277–281, doi:10.1093/infdis/172.1.277.
[24]  Srinivasan, V.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Dis. 2005, 2, 201–211, doi:10.1089/fpd.2005.2.201.
[25]  Lund, B.M.; Baird-Parker, T.C.; Gould, G. The Microbiological Safety and Quality of Food; Aspen publisher Inc.: New York, NY, USA, 2000; Volume 2, p. 1399.
[26]  Krzyminska, S.; Koczura, R.; Mokracka, J.; Puton, T.; Kaznowski, A. Isolates of the Enterobacter cloacae complex induce apoptosis of human intestinal epithelial cells. Microbial. Pathog. 2010, 49, 83–89, doi:10.1016/j.micpath.2010.04.003.
[27]  Nierop, W.H.; Dese, A.G.; Stewart, R.G.; Bilgeri, Y.R.; Koornhof, H.J. Molecular epidemiology of an outbreak of Enterobacter cloacae in the neonatal intensive care unit of a provincial hospital in Gauteng, South Africa. J. Clin. Microbiol. 1998, 66, 645–649.
[28]  Brink, A.J.; Coatzee, J.; Clay, C.G.; Sithole, S.; Richards, G.A.; Piorel, L.; Nordmunn, P. Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumonia carbapenemase (KPC-2) in South Africa. J. Clin. Microbiol. 2011, 50, 525–527.
[29]  Mesa, R.J.; Blanc, V.; Blanch, A.R.; Cortés, P.; González, J.J.; Lavilla, S.; Miró, E.; Muniesa, M.; Saco, M.; Tórtola, M.T. Extended-spectrum β-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms and sewage). J. Antimicrob. Chemother. 2006, 58, 211–215, doi:10.1093/jac/dkl211.
[30]  Haryani, Y.; Tunung, R.; Chai, L.C.; Lee, H.Y.; Tang, S.Y.; Son, R. Characterization of Enterobacter cloacae isolated from street foods. ASEAN Food J. 2008, 15, 57–64.
[31]  Paterson, D.L. Resistance in Gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control 2006, 119, S20–S28, doi:10.1016/j.ajic.2006.05.238.
[32]  Li, Q.; Sherwood, J.S.; Logue, C.M. Antimicrobial resistance of Listeria spp. recovered from processed bison. Lett. Appl. Microbiol. 2007, 44, 86–91, doi:10.1111/j.1472-765X.2006.02027.x.
[33]  Chen, B.Y.; Pyla, R.; Kim, T.J.; Silva, J.L.; Jung, Y.S. Antibiotic resistance in Listeria species isolated from catfish fillets and processing environment. Lett. Appl. Microbiol. 2010, 50, 626–632, doi:10.1111/j.1472-765X.2010.02843.x.
[34]  Arslan, S.; Ozdemir, F. Prevalence and antimicrobial resistance of Listeria spp. in homemade white cheese. Food Control 2008, 19, 360–363, doi:10.1016/j.foodcont.2007.04.009.
[35]  Cornaglia, G.; Hryniewicz, W.; Jarlier, V.; Kahlmeter, G.; Mittermayer, H.; Stratchounski, L.; Baquero, F. European recommendations for antimicrobial resistance surveillance. J. Clin. Microbiol. Infect. 2004, 10, 349–383, doi:10.1111/j.1198-743X.2004.00887.x.
[36]  Chow, J.W.; Fine, M.J.; Shlaes, D.M. Enterobacter bacteriemia: Clinical features and emergence of antibiotic resistance during therapy. Ann. Inter. Med. 1991, 115, 585–589.
[37]  DeFrancesco, K.A.; Cobbold, R.N.; Rice, D.H.; Besser, T.E.; Hancock, D.D. Antimicrobial resistance of commensal Escherichia coli from dairy cattle associated with recent multi-resistant salmonellosis outbreaks. Vet. Microbiol. 2004, 98, 55–61, doi:10.1016/j.vetmic.2003.10.017.
[38]  Giovanni, D.B.; Domenico, D.A.; Giovanni, C.; Enzo, B.; Raffaele, P. Comparison of E-test, agar dilution, broth microdilution and disk diffusion methods for testing in vitro activity of levofloxacin against Staphylococcus spp. isolated from neutropenic cancer patients. Int. J. Antimicrob. Agents. 2002, 19, 147–154, doi:10.1016/S0924-8579(01)00483-6.
[39]  Akoachere, J.-F.T.K.; Bughe, R.N.; Oben, B.O.; Ndip, L.M.; Ndip, R.N. Phenotypic characterization of human pathogenic bacteria in fish from the coastal waters of South West Cameroon: Public health implications. Rev. Environ. Health 2009, 24, 147–155, doi:10.1515/REVEH.2009.24.2.147.
[40]  Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2006; Document M2-A9.
[41]  Clinical and Laboratory Standards Institute (CLSI). Disk Diffusion Supplemental Tables; CLSI: Wayne, PA, USA, 2007; Document M100-S17.
[42]  Nyenje, M.E.; Ndip, R.N. In-vitro antimicrobial activity of crude acetone extract of the stem bark of Combretum molle against selected bacterial pathogens. J. Med. Plants Res. 2011, 5, 5315–5320.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133