This study included 6,971 students in grades 9 and 10 (ages 13 to 16 years) from 158 schools who participated in the 2009/2010 Health Behaviour in School-aged Children Study. Students provided information on where they typically ate lunch. The number of food retailers was obtained for six road network buffer sizes (500, 750, 1,000, 1,500, 2,000, and 5,000 meters) surrounding schools. Associations between the presence of food retailers near schools and students’ lunchtime eating behaviours were examined using multilevel logistic regression. Comparisons of model fit statistics indicated that the 1,000 m buffer provided the best fit. At this distance, students with ≥3 food retailers near their schools had a 3.42 times greater relative odds (95% CI: 2.12–5.52) of eating their lunchtime meal at a food retailer compared to students with no nearby food retailers. Students who had ≥2 food retailers within 750 m of their schools had a 2.74 times greater relative odds (95% CI: 1.75–4.29), while those who had ≥1 food retailer within 500 m of their schools had 2.27 times greater relative odds of eating at food retailer (95% CI: 1.46–3.52) compared to those with no nearby food retailers. For distances greater than 1,000 m, no consistent relationships were found.
References
[1]
Popkin, B.M.; Gordon-Larsen, P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int. J. Obes. Relat. Metab. Disord. 2004, 28, S2–S9, doi:10.1038/sj.ijo.0802804.
Casey, R.; Oppert, J.M.; Weber, C.; Charreire, H.; Badariotti, D.; Banos, A.; Fischler, C.; Giacoman Hernandez, C.; Chaix, B.; Simon, C. Determinants of childhood obesity: What can we learn from built environment studies? Food Qual. Prefer. 2011.
[4]
Paeratakul, S.; Ferdinand, D.P.; Champagne, C.M.; Ryan, D.H.; Bray, G.A. Fast-food consumption among US adults and children: Dietary and nutrient intake profile. J. Am. Diet. Assoc. 2003, 103, 1332–1338, doi:10.1016/S0002-8223(03)01086-1.
[5]
Pereira, M.A.; Kartashov, A.I.; Ebbeling, C.B.; van Horn, L.; Slattery, M.L.; Jacobs, D.R., Jr.; Ludwig, D.S. Fast-food habits, weight gain, and insulin resistance (the CARDIA study): 15-year prospective analys. Lancet 2005, 365, 36–42.
[6]
Bowman, S.A.; Gortmaker, S.L.; Ebbeling, C.B.; Pereira, M.A.; Ludwig, D.S. Effects of fast-food consumption on energy intake and diet quality among children in a national household survey. Pediatrics 2004, 113, 112–118, doi:10.1542/peds.113.1.112.
[7]
Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Moore, L.L. Food group intake and central obesity among children and adolescents in the Third National Health and Nutrition Examination Survey (NHANES III). Public Health Nutr. 2010, 13, 797–805, doi:10.1017/S1368980009991546.
Lindquist, C.H.; Gower, B.A.; Goran, M.I. Role of dietary factors in ethnic differences in early risk of cardiovascular disease and type 2 diabetes. Am. J. Clin. Nutr. 2000, 71, 725–732.
[10]
Taveras, E.M.; Berkey, C.S.; Rifas-Shiman, S.L.; Ludwig, D.S.; Rockett, H.R.; Field, A.E.; Colditz, G.A.; Gillman, M.W. Association of consumption of fried food away from home with body mass index and diet quality in older children and adolescents. Pediatrics 2005, 116, e518–e524, doi:10.1542/peds.2004-2732.
[11]
Austin, S.B.; Melly, S.J.; Sanchez, B.N.; Patel, A.; Buka, S.; Gortmaker, S.L. Clustering of fast-food restaurants around schools: A novel application of spatial statistics to the study of food environments. Am. J. Public Health 2005, 95, 1575–1581, doi:10.2105/AJPH.2004.056341.
[12]
Day, P.L.; Pearce, J. Obesity-promoting food environments and the spatial clustering of food outlets around schools. Am. J. Prev. Med. 2011, 40, 113–121, doi:10.1016/j.amepre.2010.10.018.
[13]
Seliske, L. The Built Environment and Obesity-Related Behaviours in Canadian Youth. PhD Thesis, Queen’s University, Kingston, ON, Canada, 2012.
[14]
Davis, B.; Carpenter, C. Proximity of fast-food restaurants to schools and adolescent obesity. Am. J. Public Health 2009, 99, 505–510, doi:10.2105/AJPH.2008.137638.
[15]
Howard, P.H.; Fitzpatrick, M.; Fulfrost, B. Proximity of food retailers to schools and rates of overweight ninth grade students: An ecological study in California. BMC Public Health 2011.
[16]
Powell, L.M.; Auld, M.C.; Chaloupka, F.J.; O’Malley, P.M.; Johnston, L.D. Associations between access to food stores and adolescent body mass index. Am. J. Prev. Med. 2007, 33, S301–S307, doi:10.1016/j.amepre.2007.07.007.
[17]
Casey, A.A.; Elliott, M.; Glanz, K.; Haire-Joshu, D.; Lovegreen, S.L.; Saelens, B.E.; Sallis, J.F.; Brownson, R.C. Impact of the food environment and physical activity environment on behaviors and weight status in rural U.S. communities. Prev. Med. 2008, 47, 600–604, doi:10.1016/j.ypmed.2008.10.001.
[18]
Inagami, S.; Cohen, D.A.; Finch, B.K.; Asch, S.M. You are where you shop: Grocery store locations, weight, and neighborhoods. Am. J. Prev. Med. 2006, 31, 10–17, doi:10.1016/j.amepre.2006.03.019.
[19]
Leatherdale, S.T.; Pouliou, T.; Church, D.; Hobin, E. The association between overweight and opportunity structures in the built environment: A multi-level analysis among elementary school youth in the PLAY-ON study. Int. J. Public Health 2011, 56, 237–246, doi:10.1007/s00038-010-0206-8.
[20]
Leung, C.W.; Laraia, B.A.; Kelly, M.; Nickleach, D.; Adler, N.E.; Kushi, L.H.; Yen, I.H. The influence of neighborhood food stores on change in young girls’ body mass index. Am. J. Prev. Med. 2011, 41, 43–51, doi:10.1016/j.amepre.2011.03.013.
[21]
Williams, L.K.; Thornton, L.; Ball, K.; Crawford, D. Is the objective food environment associated with perceptions of the food environment? Public Health Nutr. 2011, 15, 291–298.
[22]
Fraser, L.K.; Edwards, K.L. The association between the geography of fast food outlets and childhood obesity rates in Leeds, UK. Health Place 2010, 16, 1124–1128.
[23]
Fleischhacker, S.E.; Evenson, K.R.; Rodriguez, D.A.; Ammerman, A.S. A systematic review of fast food access studies. Obes. Rev. 2011, 12, e460–e471, doi:10.1111/j.1467-789X.2010.00715.x.
[24]
Laska, M.N.; Hearst, M.O.; Forsyth, A.; Pasch, K.E.; Lytle, L. Neighbourhood food environments: Are they associated with adolescent dietary intake, food purchases and weight status? Public Health Nutr. 2010, 13, 1757–1763, doi:10.1017/S1368980010001564.
[25]
Spence, J.C.; Cutumisu, N.; Edwards, J.; Raine, K.D.; Smoyer-Tomic, K. Relation between local food environments and obesity among adults. BMC Public Health 2009, 9.
[26]
Jennings, A.; Welch, A.; Jones, A.P.; Harrison, F.; Bentham, G.; van Sluijs, E.M.; Griffin, S.J.; Cassidy, A. Local food outlets, weight status, and dietary intake: Associations in children aged 9–10 years. Am. J. Prev. Med. 2011, 40, 405–410, doi:10.1016/j.amepre.2010.12.014.
[27]
Seliske, L.M.; Pickett, W.; Boyce, W.F.; Janssen, I. Association between the food retail environment surrounding schools and overweight in Canadian youth. Public Health Nutr. 2009, 12, 1384–1391.
[28]
Crawford, D.A.; Timperio, A.F.; Salmon, J.A.; Baur, L.; Giles-Corti, B.; Roberts, R.J.; Jackson, M.L.; Andrianopoulos, N.; Ball, K. Neighbourhood fast food outlets and obesity in children and adults: The CLAN Study. Int. J. Pediatr. Obes. 2008, 3, 249–256, doi:10.1080/17477160802113225.
[29]
Seliske, L.M.; Pickett, W.; Bates, R.; Janssen, I. Field validation of food service listings: A comparison of commercial and online geographic information system databases. 2012, 9, 2601–2607.
[30]
Alter, D.A.; Eny, K. The relationship between the supply of fast-food chains and cardiovascular outcomes. Can. J. Public Health 2005, 96, 173–177.
[31]
Technomic. Top 200 Canadian Chain Restaurant Report; Technomic Inc.: Chicago, IL, USA, 2010.
[32]
French, S.A.; Story, M.; Neumark-Sztainer, D.; Fulkerson, J.A.; Hannan, P. Fast food restaurant use among adolescents: Associations with nutrient intake, food choices and behavioral and psychosocial variables. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1823–1833, doi:10.1038/sj.ijo.0801820.
[33]
Campbell, K.; Crawford, D.; Jackson, M.; Cashel, K.; Worsley, A.; Gibbons, K.; Birch, L.L. Family food environments of 5–6-year-old-children: Does socioeconomic status make a difference? Asia Pac. J. Clin. Nutr. 2002, 11, S553–S561, doi:10.1046/j.0964-7058.2002.00346.x.
[34]
Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescents: The development of the health behaviour in school-aged children (HBSC) family affluence scale. Soc. Sci. Med. 2008, 66, 1429–1436, doi:10.1016/j.socscimed.2007.11.024.
[35]
Briefel, R.R.; Crepinsek, M.K.; Cabili, C.; Wilson, A.; Gleason, P.M. School food environments and practices affect dietary behaviors of US public school children. J. Am. Diet. Assoc. 2009, 109, S91–S107.
[36]
Kubik, M.Y.; Lytle, L.A.; Hannan, P.J.; Perry, C.L.; Story, M. The association of the school food environment with dietary behaviors of young adolescents. Am. J. Public Health 2003, 93, 1168–1173, doi:10.2105/AJPH.93.7.1168.
[37]
Park, S.; Sappenfield, W.M.; Huang, Y.; Sherry, B.; Bensyl, D.M. The impact of the availability of school vending machines on eating behavior during lunch: The youth physical activity and nutrition survey. J. Am. Diet. Assoc. 2010, 110, 1532–1536, doi:10.1016/j.jada.2010.07.003.
[38]
Burnham, K.P.; Andersen, L.B. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2002.
[39]
Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243.
[40]
Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10-79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223.
[41]
Kwan, M.P. Space-time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geogr. Anal. 1998, 30, 191–216, doi:10.1111/j.1538-4632.1998.tb00396.x.
[42]
Kestens, Y.; Lebel, A.; Daniel, M.; Theriault, M.; Pampalon, R. Using experienced activity spaces to measure foodscape exposure. Health Place 2010, 16, 1094–1103, doi:10.1016/j.healthplace.2010.06.016.
[43]
Klesges, L.M.; Baranowski, T.; Beech, B.; Cullen, K.; Murray, D.M.; Rochon, J.; Pratt, C. Social desirability bias in self-reported dietary, physical activity and weight concerns measures in 8 to 10 year-old African-American girls: Results from the girls health enrichment multisite studies (GEMS). Prev. Med. 2004, 38, S78–S87.
[44]
Vagstrand, K.; Lindroos, A.K.; Linne, Y. Characteristics of high and low energy reporting teenagers and their relationship to low energy reporting mothers. Public Health Nutr. 2009, 12, 188–196, doi:10.1017/S1368980008002590.