全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Genomic Effects of Xenoestrogen Mixtures

DOI: 10.3390/ijerph9082694

Keywords: non-genomic, estrogenic mixtures, endocrine-disrupting chemicals, xenoestrogens, non-monotonic dose-response curves, kinases, hormesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Xenoestrogens (XEs) are chemicals derived from a variety of natural and anthropogenic sources that can interfere with endogenous estrogens by either mimicking or blocking their responses via non-genomic and/or genomic signaling mechanisms. Disruption of estrogens’ actions through the less-studied non-genomic pathway can alter such functional end points as cell proliferation, peptide hormone release, catecholamine transport, and apoptosis, among others. Studies of potentially adverse effects due to mixtures and to low doses of endocrine-disrupting chemicals have recently become more feasible, though few so far have included actions via the non-genomic pathway. Physiologic estrogens and XEs evoke non-monotonic dose responses, with different compounds having different patterns of actions dependent on concentration and time, making mixture assessments all the more challenging. In order to understand the spectrum of toxicities and their mechanisms, future work should focus on carefully studying individual and mixture components across a range of concentrations and cellular pathways in a variety of tissue types.

References

[1]  Watson, C.S.; Jeng, Y.J.; Guptarak, J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J. Steroid Biochem. Mol. Biol. 2011, 127, 44–50, doi:10.1016/j.jsbmb.2011.01.015.
[2]  Goncalves, C.R.; Cunha, R.W.; Barros, D.M.; Martinez, P.E. Effects of prenatal and postnatal exposure to a low dose of bisphenol A on behavior and memory in rats. Environ. Toxicol. Pharmacol. 2010, 30, 195–201.
[3]  Li, D.K.; Zhou, Z.; Miao, M.; He, Y.; Wang, J.; Ferber, J.; Herrinton, L.J.; Gao, E.; Yuan, W. Urine bisphenol-A (BPA) level in relation to semen quality. Fertil. Steril. 2011, 95, 625–630, doi:10.1016/j.fertnstert.2010.09.026.
[4]  Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.; Tyler, C.R. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2047–2062.
[5]  Sohoni, P.; Tyler, C.R.; Hurd, K.; Caunter, J.; Hetheridge, M.; Williams, T.; Woods, C.; Evans, M.; Toy, R.; Gargas, M.; Sumpter, J.P. Reproductive effects of long-term exposure to Bisphenol A in the fathead minnow (Pimephales promelas). Environ. Sci. Technol. 2001, 35, 2917–2925, doi:10.1021/es000198n.
[6]  Wolstenholme, J.T.; Taylor, J.A.; Shetty, S.R.; Edwards, M.; Connelly, J.J.; Rissman, E.F. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS One 2011, 6.
[7]  Zhou, J.; Zhu, X.S.; Cai, Z.H. The impacts of bisphenol A (BPA) on abalone (Haliotis diversicolor supertexta) embryonic development. Chemosphere 2011, 82, 443–450, doi:10.1016/j.chemosphere.2010.09.056.
[8]  Bouskine, A.; Nebout, M.; Brucker-Davis, F.; Benahmed, M.; Fenichel, P. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor. Environ. Health Perspect. 2009, 117, 1053–1058.
[9]  Alonso-Magdalena, P.; Morimoto, S.; Ripoll, C.; Fuentes, E.; Nadal, A. The estrogenic effect of bisphenol A disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ. Health Perspect. 2006, 114, 106–112.
[10]  Midoro-Horiuti, T.; Tiwari, R.; Watson, C.S.; Goldblum, R.M. Maternal bisphenol a exposure promotes the development of experimental asthma in mouse pups. Environ. Health Perspect. 2010, 118, 273–277.
[11]  Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N. Environmental estrogens and obesity. Mol. Cell Endocrinol. 2009, 304, 84–89, doi:10.1016/j.mce.2009.02.024.
[12]  Newbold, R.R. Developmental exposure to endocrine-disrupting chemicals programs for reproductive tract alterations and obesity later in life. Am. J. Clin. Nutr. 2011, 94, S1939–S1942, doi:10.3945/ajcn.110.001057.
[13]  Topp, E.; Starratt, A. Rapid mineralizatin of the enddocrine-disrupting chemical 4-nonylphenol in soil. Environ. Toxicol. Chem. 1999, 19, 313–318.
[14]  Wang, J.; Xie, P.; Guo, N. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Environ. Res. 2007, 103, 70–78, doi:10.1016/j.envres.2006.05.013.
[15]  Kubwabo, C.; Kosarac, I.; Stewart, B.; Gauthier, B.R.; Lalonde, K.; Lalonde, P.J. Migration of bisphenol A from plastic baby bottles, baby bottle liners and reusable polycarbonate drinking bottles. Food Addit. Contam. A Chem. Anal. Control Expo Risk Assess. 2009, 26, 928–937.
[16]  Dave, G.; Herger, G. Determination of detoxification to Daphnia magna of four pharmaceuticals and seven surfactants by activated sludge. Chemosphere 2012, 88, 459–466, doi:10.1016/j.chemosphere.2012.02.070.
[17]  Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barcelo, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J. Hazard Mater. 2012. accepted.
[18]  Kuruto-Niwa, R.; Nozawa, R.; Miyakoshi, T.; Shiozawa, T.; Terao, Y. Estrogenic activity of alkylphenols, bisphenol S, and their chlorinated derivatives using a GFP expression syste. Environ. Toxicol. Pharmacol. 2005, 19, 121–130, doi:10.1016/j.etap.2004.05.009.
[19]  Teuschler, L.; Klaunig, J.; Carney, E.; Chambers, J.; Conolly, R.; Gennings, C.; Giesy, J.; Hertzberg, R.; Klaassen, C.; Kodell, R.; Paustenbach, D.; Yang, R. Support of science-based decisions concerning the evaluation of the toxicology of mixtures: A new beginning. Regul. Toxicol. Pharmacol. 2002, 36, 34–39, doi:10.1006/rtph.2002.1570.
[20]  Alyea, R.A.; Laurence, S.E.; Kim, S.H.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Watson, C.S. The roles of membrane estrogen receptor subtypes in modulating dopamine transporters in PC-12 cells. J. Neurochem. 2008, 106, 1525–1533.
[21]  Alyea, R.A.; Watson, C.S. Nongenomic mechanisms of physiological estrogen-mediated dopamine efflux. BMC Neurosci. 2009, 10.
[22]  Jeng, Y.J.; Watson, C.S. Proliferative and anti-proliferative effects of dietary levels of phytoestrogens in rat pituitary GH3/B6/F10 cells—The involvement of rapidly activated kinases and caspases. BMC Cancer 2009, 9.
[23]  Jeng, Y.J.; Kochukov, M.Y.; Watson, C.S. Membrane estrogen receptor-alpha-mediated nongenomic actions of phytoestrogens in GH3/B6/F10 pituitary tumor cells. J. Mol. Signal. 2009, 4.
[24]  Jeng, Y.J.; Kochukov, M.; Watson, C.S. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells. Environ. Health 2010, 9.
[25]  Jeng, Y.J.; Watson, C.S. Combinations of physiologic estrogens with xenoestrogens alter ERK phosphorylation profiles in rat pituitary cells. Environ. Health Perspect. 2011, 119, 104–112.
[26]  Kochukov, M.Y.; Jeng, Y.-J.; Watson, C.S. Alkylphenol xenoestrogens with varying carbon chain lengths differentially and potently activate signaling and functional responses in GH3/B6/F10 somatomammotropes. Environ. Health Perspect. 2009, 117, 723–730.
[27]  Vandenberg, L.N.; Colborn, T.; Hayes, T.B.; Heindel, J.J.; Jacobs, D.R., Jr.; Lee, D.H.; Shioda, T.; Soto, A.M.; Vom Saal, F.S.; Welshons, W.V.; Zoeller, R.T.; Myers, J.P. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr. Rev. 2012, 33, 378–455, doi:10.1210/er.2011-1050.
[28]  Kortenkamp, A. Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 2007, 115(Suppl 1), 98–105, doi:10.1289/ehp.9357.
[29]  Hayes, T.B.; Case, P.; Chui, S.; Chung, D.; Haeffele, C.; Haston, K.; Lee, M.; Mai, V.P.; Marjuoa, Y.; Parker, J.; Tsui, M. Pesticide mixtures, endocrine disruption, and amphibian declines: Are we underestimating the impact? Environ. Health Perspect. 2006, 114(Suppl 1), 40–50.
[30]  Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto, A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009, 30, 75–95.
[31]  Decherf, S.; Seugnet, I.; Fini, J.B.; Clerget-Froidevaux, M.S.; Demeneix, B.A. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Mol. Cell Endocrinol. 2010, 323, 172–182, doi:10.1016/j.mce.2010.04.010.
[32]  Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342, doi:10.1210/er.2009-0002.
[33]  Kretschmer, X.C.; Baldwin, W.S. CAR and PXR: Xenosensors of endocrine disrupters? Chem. Biol. Interact. 2005, 155, 111–128, doi:10.1016/j.cbi.2005.06.003.
[34]  Qin, X.Y.; Zaha, H.; Nagano, R.; Yoshinaga, J.; Yonemoto, J.; Sone, H. Xenoestrogens down-regulate aryl-hydrocarbon receptor nuclear translocator 2 mRNA expression in human breast cancer cells via an estrogen receptor alpha-dependent mechanism. Toxicol. Lett. 2011, 206, 152–157, doi:10.1016/j.toxlet.2011.07.007.
[35]  Deroo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Invest. 2006, 116, 561–570, doi:10.1172/JCI27987.
[36]  Li, L.; Haynes, M.P.; Bender, J.R. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc. Natl. Acad. Sci. USA 2003, 100, 4807–4812, doi:10.1073/pnas.0831079100.
[37]  Pappas, T.C.; Gametchu, B.; Yannariello-Brown, J.; Collins, T.J.; Watson, C.S. Membrane estrogen receptors in GH3/B6 cells are associated with rapid estrogen-induced release of prolactin. Endocrine 1994, 2, 813–822.
[38]  Pietras, R.J.; Levin, E.R.; Szego, C.M. Estrogen receptors and cell signaling. Science 2005, 310, 51–53, doi:10.1126/science.310.5745.51.
[39]  Pietras, R.J.; Szego, C.M. Cell membrane estrogen receptors resurface. Nat. Med. 1999, 5, 1330, doi:10.1038/70877.
[40]  Kang, L.; Zhang, X.; Xie, Y.; Tu, Y.; Wang, D.; Liu, Z.; Wang, Z.Y. Involvement of estrogen receptor variant ER-alpha36, not GPR30, in nongenomic estrogen signaling. Mol. Endocrinol. 2010, 24, 709–721, doi:10.1210/me.2009-0317.
[41]  Thomas, P.; Pang, Y.; Filardo, E.J.; Dong, J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 2005, 146, 624–632.
[42]  Thomas, P.; Dong, J. Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: A potential novel mechanism of endocrine disruption. J. Steroid Biochem. Mol. Biol. 2006, 102, 175–179, doi:10.1016/j.jsbmb.2006.09.017.
[43]  Watson, C.S.; Gametchu, B. Membrane-initiated steroid actions and the proteins that mediate them. Proc. Soc. Exp. Biol. Med. 1999, 220, 9–19.
[44]  Watson, C.S.; Campbell, C.H.; Gametchu, B. Membrane estrogen receptors on rat pituitary tumor cells: Immunoidentification and responses to estradiol and xenoestrogens. Exp. Physiol. 1999, 84, 1013–1022, doi:10.1017/S095806709901903X.
[45]  Campbell, C.H.; Watson, C.S. A comparison of membrane vs. intracellular estrogen receptor-alpha in GH(3)/B6 pituitary tumor cells using a quantitative plate immunoassay. Steroids 2001, 66, 727–736, doi:10.1016/S0039-128X(01)00106-4.
[46]  Powell, C.E.; Soto, A.M.; Sonnenschein, C. Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. J. Steroid Biochem. Mol. Biol. 2001, 77, 97–108, doi:10.1016/S0960-0760(01)00040-1.
[47]  Norfleet, A.M.; Clarke, C.; Gametchu, B.; Watson, C.S. Antibodies to the estrogen receptor-α modulate prolactin release from rat pituitary tumor cells through plasma membrane estrogen receptors. FASEB J. 2000, 14, 157–165.
[48]  Razandi, M.; Alton, G.; Pedram, A.; Ghonshani, S.; Webb, P.; Levin, E.R. Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol. Cell Biol. 2003, 23, 1633–1646, doi:10.1128/MCB.23.5.1633-1646.2003.
[49]  Schlegel, A.; Wang, C.G.; Katzenellenbogen, B.S.; Pestell, R.G.; Lisanti, M.P. Caveolin-1 potentiates estrogen receptor alpha (ER alpha) signaling—Caveolin-1 drives ligand-independent nuclear translocation and activation of ER alpha. J. Biol. Chem. 1999, 274, 33551–33556.
[50]  Watson, C.S.; Jeng, Y.J.; Hu, G.; Wozniak, A.; Bulayeva, N.; Guptarak, J. Estrogen- and xenoestrogen-induced ERK signaling in pituitary tumor cells involves estrogen receptor-alpha interactions with G protein-alphai and caveolin I. Steroids 2011, 77, 424–432.
[51]  Razandi, M.; Oh, P.; Pedram, A.; Schnitzer, J.; Levin, E.R. ERs associate with and regulate the production of caveolin: Implications for signaling and cellular actions. Mol. Endocrinol. 2002, 16, 100–115, doi:10.1210/me.16.1.100.
[52]  Pedram, A.; Razandi, M.; Levin, E.R. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 2006, 20, 1996–2009.
[53]  Norfleet, A.M.; Thomas, M.L.; Watson, C.S. Modulation of Membrane Estrogen Receptor-α Levels by Nuclear Estrogen Receptor-α Antisense Oligodeoxynucleotides in the Rat Pituitary Tumor Cell Line, GH3/B6/F10. In Presented at Endocrine Society Meeting, San Diego, CA, USA, 12–15 June 1999.
[54]  Norfleet, A.M.; Thomas, M.L.; Gametchu, B.; Watson, C.S. Estrogen receptor-α detected on the plasma membrane of aldehyde-fixed GH3/B6/F10 rat pituitary cells by enzyme-linked immunocytochemistry. Endocrinology 1999, 140, 3805–3814.
[55]  Pedram, A.; Razandi, M.; Sainson, R.C.; Kim, J.K.; Hughes, C.C.; Levin, E.R. A conserved mechanism for steroid receptor translocation to the plasma membrane. J. Biol. Chem. 2007, 282, 22278–22288.
[56]  Kuiper, G.G.; Carlsson, B.; Grandien, K.; Enmark, E.; Haggblad, J.; Nilsson, S.; Gustafsson, J.-?. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138, 863–870.
[57]  Wozniak, A.L.; Bulayeva, N.N.; Watson, C.S. Xenoestrogens at picomolar to nanomolar concentrations trigger membrane estrogen receptor-alpha-mediated Ca2+ fluxes and prolactin release in GH3/B6 pituitary tumor cells. Environ. Health Perspect. 2005, 113, 431–439.
[58]  Hunter, T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 1995, 80, 225–236, doi:10.1016/0092-8674(95)90405-0.
[59]  Junttila, M.R.; Li, S.P.; Westermarck, J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 2008, 22, 954–965.
[60]  Nordstrom, E.; Fisone, G.; Kristensson, K. Opposing effects of ERK and p38-JNK MAP kinase pathways on formation of prions in GT1-1 cells. FASEB J. 2009, 23, 613–622.
[61]  Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995, 270, 1326–1331.
[62]  Jeng, Y.-J.; Watson, C.S.; Thomas, M.L. Identification of vitamin D-stimulated alkaline phosphatase in IEC-6 cells, a rat small intestine crypt cell line. Exp. Cell Res. 1994, 212, 338–343, doi:10.1006/excr.1994.1152.
[63]  Bulayeva, N.N.; Wozniak, A.; Lash, L.L.; Watson, C.S. Mechanisms of membrane estrogen receptor-{alpha}-mediated rapid stimulation of Ca2+ levels and prolactin release in a pituitary cell line. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E388–E397, doi:10.1152/ajpendo.00349.2004.
[64]  Alyea, R.A.; Watson, C.S. Differential regulation of dopamine transporter function and location by low concentrations of environmental estrogens and 17beta-estradiol. Environ. Health Perspect. 2009, 117, 778–783, doi:10.1289/ehp.0800026.
[65]  Binda, F.; Dipace, C.; Bowton, E.; Robertson, S.D.; Lute, B.J.; Fog, J.U.; Zhang, M.; Sen, N.; Colbran, R.J.; Gnegy, M.E.; Gether, U.; Javitch, J.A.; Erreger, K.; Galli, A. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux. Mol. Pharmacol. 2008, 74, 1101–1108.
[66]  Foster, J.D.; Cervinski, M.A.; Gorentla, B.K.; Vaughan, R.A. Regulation of the dopamine transporter by phosphorylation. Handb. Exp. Pharmacol. 2006, 175, 197–214, doi:10.1007/3-540-29784-7_10.
[67]  International Dose-Response Society. Available online: http://www.dose-response.org/ (accessed on 23 July 2012).
[68]  U.S.Food and Drug Administration. Bisphenol A (BPA):Use in Food Contact Applications; FDA: Silver Spring, MD, USA, 2012.
[69]  Fenner-Crisp, P.A. Endocrine modulators: Risk characterization and assessment. Toxicol. Pathol. 2000, 28, 438–440, doi:10.1177/019262330002800313.
[70]  Lucier, G.W. Dose-response relationships for endocrine disruptors: What we know and what we don’t know. Regul. Toxicol. Pharmacol. 1997, 26, 34–35, doi:10.1006/rtph.1997.1114.
[71]  Myers, J.P.; Zoeller, R.T.; vom Saal, F.S. A clash of old and new scientific concepts in toxicity, with important implications for public health. Environ. Health Perspect. 2009, 117, 1652–1655.
[72]  Teuschler, L.; Klaunig, J.; Carney, E.; Chambers, J.; Conolly, R.; Gennings, C.; Giesy, J.; Hertzberg, R.; Klaassen, C.; Kodell, R.; Paustenbach, D.; Yang, R. Support of science-based decisions concerning the evaluation of the toxicology of mixtures: A new beginning. Regul. Toxicol. Pharmacol. 2002, 36, 34–39, doi:10.1006/rtph.2002.1570.
[73]  Watson, C.S.; Jeng, Y.J.; Guptarak, J. Endocrine disruption via estrogen receptors that participate in nongenomic signaling pathways. J. Steroid Biochem. Mol. Biol. 2011, 127, 44–50, doi:10.1016/j.jsbmb.2011.01.015.
[74]  Soto, A.M.; Rubin, B.S.; Sonnenschein, C. Interpreting endocrine disruption from an integrative biology perspective. Mol. Cell Endocrinol. 2009, 304, 3–7, doi:10.1016/j.mce.2009.02.020.
[75]  Calabrese, E.J.; Iavicoli, I.; Calabrese, V. Hormesis: Why it is important to biogerontologists. Biogerontology 2012, 13, 215–235, doi:10.1007/s10522-012-9374-7.
[76]  Calabrese, E.J. Getting the dose-response wrong: Why hormesis became marginalized and the threshold model accepted. Arch. Toxicol. 2009, 83, 227–247, doi:10.1007/s00204-009-0411-5.
[77]  Calabrese, E.J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 2010, 29, 249–261, doi:10.1177/0960327109363973.
[78]  Vandenberg, L.N.; Wadia, P.R.; Schaeberle, C.M.; Rubin, B.S.; Sonnenschein, C.; Soto, A.M. The mammary gland response to estradiol: Monotonic at the cellular level, non-monotonic at the tissue-level of organization? J. Steroid Biochem. Mol. Biol. 2006, 101, 263–274, doi:10.1016/j.jsbmb.2006.06.028.
[79]  Watson, C.S. The Identities of Membrane Steroid Receptors....and Other Proteins Mediating Nongenomic Steroid Action; Kluwer Academic Publishers: Boston, MA, USA, 2003.
[80]  Bermudez, O.; Marchetti, S.; Pages, G.; Gimond, C. Post-translational regulation of the ERK phosphatase DUSP6/MKP3 by the mTOR pathway. Oncogene 2008, 27, 3685–3691, doi:10.1038/sj.onc.1211040.
[81]  Wang, Z.; Zhang, B.; Wang, M.; Carr, B.I. Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. J. Cell Physiol. 2005, 204, 437–444, doi:10.1002/jcp.20297.
[82]  Yu, L.G.; Packman, L.C.; Weldon, M.; Hamlett, J.; Rhodes, J.M. Protein phosphatase 2A, a negative regulator of the ERK signaling pathway, is activated by tyrosine phosphorylation of putative HLA class II-associated protein I (PHAPI)/pp32 in response to the antiproliferative lectin, jacalin. J. Biol. Chem. 2004, 279, 41377–41383.
[83]  Zivadinovic, D.; Watson, C.S. Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast Cancer Res. 2005, 7, R130–R144.
[84]  Bulayeva, N.N.; Gametchu, B.; Watson, C.S. Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids 2004, 69, 181–192, doi:10.1016/j.steroids.2003.12.003.
[85]  Stormshak, F.; Leake, R.; Wertz, N.; Gorski, J. Stimulatory and inhibitory effects of estrogen on uterine DNA synthesis. Endocrinology 1976, 99, 1501–1511, doi:10.1210/endo-99-6-1501.
[86]  Wiklund, J.; Wertz, N.; Gorski, J. A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 1981, 109, 1700–1707, doi:10.1210/endo-109-5-1700.
[87]  Watson, C.S.; Jeng, Y.J.; Kochukov, M.Y. Nongenomic signaling pathways of estrogen toxicity. Toxicol. Sci. 2010, 115, 1–11, doi:10.1093/toxsci/kfp288.
[88]  Calabrese, E.J. Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008, 27, 1451–1474, doi:10.1897/07-541.1.
[89]  Calabrese, E.J. Hormesis and mixtures. Toxicol. Appl. Pharmacol. 2008, 229, 262–263, doi:10.1016/j.taap.2008.01.024.
[90]  Yang, R.S.; Dennison, J.E. Initial analyses of the relationship between “Thresholds” of toxicity for individual chemicals and “Interaction Thresholds” for chemical mixtures. Toxicol. Appl. Pharmacol. 2007, 223, 133–138, doi:10.1016/j.taap.2006.11.016.
[91]  Sheehan, D.M.; Willingham, E.; Gaylor, D.; Bergeron, J.M.; Crews, D. No threshold dose for estradiol-induced sex reversal of turtle embryos: How little is too much? Environ. Health Perspect. 1999, 107, 155–159.
[92]  Sheehan, D.M. No-threshold dose-response curves for nongenotoxic chemicals: Findings and applications for risk assessment. Environ. Res. 2006, 100, 93–99, doi:10.1016/j.envres.2005.09.002.
[93]  Cornwell, T.; Cohick, W.; Raskin, I. Dietary phytoestrogens and health. Phytochemistry 2004, 65, 995–1016.
[94]  Watson, C.S.; Alyea, R.A.; Cunningham, K.A.; Jeng, Y.J. Estrogens of multiple classes and their role in mental health disease mechanisms. Int. J. Womens Health 2010, 2, 153–166.
[95]  Greenspan, F.S.; Gardner, D.G. Appendix: Normal Hormone Reference Ranges. In Basic and Clinical Endocrinology, 7th; Greenspan, F.S., Gardner, D.G., Eds.; Lange Medical Books: McGraw Hill, NY, USA, 2004; pp. 925–926.
[96]  Benn, P.A. Advances in prenatal screening for Down syndrome: I. General principles and second trimester testing. Clin. Chim. Acta 2002, 323, 1–16, doi:10.1016/S0009-8981(02)00186-9.
[97]  Shenhav, S.; Gemer, O.; Volodarsky, M.; Zohav, E.; Segal, S. Midtrimester triple test levels in women with severe preeclampsia and HELLP syndrome. Acta Obstet. Gynecol Scand. 2003, 82, 912–915, doi:10.1034/j.1600-0412.2003.00250.x.
[98]  Greenlee, H.; Chen, Y.; Kabat, G.C.; Wang, Q.; Kibriya, M.G.; Gurvich, I.; Sepkovic, D.W.; Bradlow, H.L.; Senie, R.T.; Santella, R.M.; Ahsan, H. Variants in estrogen metabolism and biosynthesis genes and urinary estrogen metabolites in women with a family history of breast cancer. Breast Cancer Res. Treat. 2007, 102, 111–117, doi:10.1007/s10549-006-9308-7.
[99]  Riza, E.; dos Santos Silva, I.; De Stavola, B.; Bradlow, H.L.; Sepkovic, D.W.; Linos, D.; Linos, A. Urinary estrogen metabolites and mammographic parenchymal patterns in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 2001, 10, 627–634.
[100]  Mermelstein, P.G.; Becker, J.B.; Surmeier, D.J. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J. Neurosci. 1996, 16, 595–604.
[101]  Schwarz, S.; Pohl, P. Steroids and opioid receptors. J. Steroid Biochem. Mol. Biol. 1994, 48, 391–402, doi:10.1016/0960-0760(94)90080-9.
[102]  Watson, C.S.; Jeng, Y.J.; Kochukov, M.Y. Nongenomic actions of estradiol compared with estrone and estriol in pituitary tumor cell signaling and proliferation. FASEB J. 2008, 22, 3328–3336, doi:10.1096/fj.08-107672.
[103]  Jean, J.; Perrodin, Y.; Pivot, C.; Trepo, D.; Perraud, M.; Droguet, J.; Tissot-Guerraz, F.; Locher, F. Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. J. Environ. Manag. 2012, 103C, 113–121.
[104]  Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159, doi:10.1016/j.aquatox.2005.09.009.
[105]  Gall, H.E.; Sassman, S.A.; Lee, L.S.; Jafvert, C.T. Hormone discharges from a midwest tile-drained agroecosystem receiving animal wastes. Environ. Sci. Technol. 2011, 45, 8755–8764.
[106]  Lu, G.; Yan, Z.; Wang, Y.; Chen, W. Assessment of estrogenic contamination and biological effects in Lake Taihu. Ecotoxicology 2011, 20, 974–981, doi:10.1007/s10646-011-0660-y.
[107]  Soto, A.M.; Calabro, J.M.; Prechtl, N.V.; Yau, A.Y.; Orlando, E.F.; Daxenberger, A.; Kolok, A.S.; Guillette, L.J., Jr.; le Bizec, B.; Lange, I.G.; Sonnenschein, C. Androgenic and estrogenic activity in water bodies receiving cattle feedlot effluent in Eastern Nebraska, USA. Environ. Health Perspect. 2004, 112, 346–352.
[108]  Touraud, E.; Roig, B.; Sumpter, J.P.; Coetsier, C. Drug residues and endocrine disruptors in drinking water: risk for humans? Int. J. Hyg. Environ. Health. 2011, 214, 437–441, doi:10.1016/j.ijheh.2011.06.003.
[109]  Zhou, Y.; Zha, J.; Xu, Y.; Lei, B.; Wang, Z. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environ. Monit. Assess. 2012, 184, 1719–1729, doi:10.1007/s10661-011-2073-z.
[110]  Mustafa, A.M.; Malintan, N.T.; Seelan, S.; Zhan, Z.; Mohamed, Z.; Hassan, J.; Pendek, R.; Hussain, R.; Ito, N. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations. Toxicol. Appl. Pharmacol. 2007, 222, 25–32.
[111]  Whitten, P.L.; Patisaul, H.B. Cross-species and interassay comparisons of phytoestrogen action. Environ. Health Perspect. 2001, 109, 5–20.
[112]  Adlercreutz, H.; Fotsis, T.; Lampe, J.; Wahala, K.; Makela, T.; Brunow, G.; Hase, T. Quantitative determination of lignans and isoflavonoids in plasma of omnivorous and vegetarian women by isotope dilution gas chromatography-mass spectrometry. Scand. J. Clin. Lab. Invest. Suppl. 1993, 215, 5–18.
[113]  Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Discov. 2006, 5, 493–506, doi:10.1038/nrd2060.
[114]  Lippi, G.; Franchini, M.; Favaloro, E.J.; Targher, G. Moderate red wine consumption and cardiovascular disease risk: Beyond the “French paradox”. Semin. Thromb Hemost. 2010, 36, 59–70, doi:10.1055/s-0030-1248725.
[115]  Eden, J.A. Phytoestrogens for menopausal symptoms: A review. Maturitas 2012, 72, 157–159, doi:10.1016/j.maturitas.2012.03.006.
[116]  Pitkin, J. Alternative and complementary therapies for the menopause. Menopause Int. 2012, 18, 20–27, doi:10.1258/mi.2012.012001.
[117]  Sunita, P.; Pattanayak, S.P. Phytoestrogens in postmenopausal indications: A theoretical perspective. Pharmacogn Rev. 2011, 5, 41–47, doi:10.4103/0973-7847.79098.
[118]  Jeng, Y.J.; Kochukov, M.; Nauduri, D.; Kaphalia, B.S.; Watson, C.S. Subchronic exposure to phytoestrogens alone and in combination with diethylstilbestrol—Pituitary tumor induction in Fischer 344 rats. Nutr. Metab. (Lond.) 2010, 7.
[119]  Jefferson, W.N.; Patisaul, H.B.; Williams, C.J. Reproductive consequences of developmental phytoestrogen exposure. Reproduction. 2012, 143, 247–260, doi:10.1530/REP-11-0369.
[120]  Adlercreutz, H.; Yamada, T.; Wahala, K.; Watanabe, S. Maternal and neonatal phytoestrogens in Japanese women during birth. Am. J. Obstet. Gynecol. 1999, 180, 737–743, doi:10.1016/S0002-9378(99)70281-4.
[121]  Cao, Y.; Calafat, A.M.; Doerge, D.R.; Umbach, D.M.; Bernbaum, J.C.; Twaddle, N.C.; Ye, X.; Rogan, W.J. Isoflavones in urine, saliva, and blood of infants: Data from a pilot study on the estrogenic activity of soy formula. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 223–234, doi:10.1038/jes.2008.44.
[122]  Setchell, K.D.; Zimmer-Nechemias, L.; Cai, J.; Heubi, J.E. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 1998, 68, S1453–S1461.
[123]  Gaido, K.W.; Leonard, L.S.; Lovell, S.; Gould, J.C.; Babai, D.; Portier, C.J.; McDonnell, D.P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicol. Appl. Pharmacol. 1997, 143, 205–212, doi:10.1006/taap.1996.8069.
[124]  Mazerolles, G.; Preys, S.; Bouchut, C.; Meudec, E.; Fulcrand, H.; Souquet, J.M.; Cheynier, V. Combination of several mass spectrometry ionization modes: A multiblock analysis for a rapid characterization of the red wine polyphenolic composition. Anal. Chim. Acta 2010, 678, 195–202, doi:10.1016/j.aca.2010.07.034.
[125]  Zhu, L.; Zhang, Y.; Lu, J. Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int. J. Mol. Sci. 2012, 13, 3492–3510, doi:10.3390/ijms13033492.
[126]  Mnif, W.; Hassine, A.I.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303, doi:10.3390/ijerph8062265.
[127]  Soto, A.M.; Chung, K.L.; Sonnenschein, C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ. Health Perspect. 1994, 102, 380–383, doi:10.1289/ehp.94102380.
[128]  Shaw, J.; deCatanzaro, D. Estrogenicity of parabens revisited: Impact of parabens on early pregnancy and an uterotrophic assay in mice. Reprod. Toxicol. 2009, 28, 26–31, doi:10.1016/j.reprotox.2009.03.003.
[129]  Bonefeld-Jorgensen, E.C.; Long, M.; Hofmeister, M.V.; Vinggaard, A.M. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: New data and a brief review. Environ. Health Perspect. 2007, 115(Suppl 1), 69–76.
[130]  Isidori, M.; Lavorgna, M.; Palumbo, M.; Piccioli, V.; Parrella, A. Influence of alkylphenols and trace elements in toxic, genotoxic, and endocrine disruption activity of wastewater treatment plants. Environ. Toxicol. Chem. 2007, 26, 1686–1694, doi:10.1897/06-320R2.1.
[131]  Kujawinski, E.B.; Kido Soule, M.C.; Valentine, D.L.; Boysen, A.K.; Longnecker, K.; Redmond, M.C. Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 2011, 45, 1298–1306.
[132]  Ahel, M.; McEvoy, J.; Giger, W. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in freshwater organisms. Environ. Pollut. 1993, 79, 243–248, doi:10.1016/0269-7491(93)90096-7.
[133]  Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health. 2011, 214, 442–448, doi:10.1016/j.ijheh.2011.08.002.
[134]  Fleisch, A.F.; Sheffield, P.E.; Chinn, C.; Edelstein, B.L.; Landrigan, P.J. Bisphenol A and related compounds in dental materials. Pediatrics. 2010, 126, 760–768.
[135]  Geens, T.; Goeyens, L.; Covaci, A. Are potential sources for human exposure to bisphenol-A overlooked? Int. J. Hyg. Environ. Health 2011, 214, 339–347, doi:10.1016/j.ijheh.2011.04.005.
[136]  Huang, Y.Q.; Wong, C.K.; Zheng, J.S.; Bouwman, H.; Barra, R.; Wahlstrom, B.; Neretin, L.; Wong, M.H. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts. Environ. Int. 2012, 42, 91–99, doi:10.1016/j.envint.2011.04.010.
[137]  Myers, D.E.; Hutz, R.J. Current status of potential bisphenol toxicity in dentistry. Gen. Dent. 2011, 59, 262–265.
[138]  Alonso-Magdalena, P.; Vieira, E.; Soriano, S.; Menes, L.; Burks, D.; Quesada, I.; Nadal, A. Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect. 2010, 118, 1243–1250.
[139]  Soto, A.M.; Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C. Does breast cancer start in the womb? Basic Clin. Pharmacol. Toxicol. 2008, 102, 125–133, doi:10.1111/j.1742-7843.2007.00165.x.
[140]  The Scientis -Jef Akst. US Doesn’t Ban BPA—The FDA Announces that BPA will Continue to be Permitted in Food and Beverage Containers. Available online: http://the-scientist.com/2012/04/02/us-doesnt-ban-bpa/ (accessed on 2 April 2012).
[141]  Canada Gazette. Order Adding Toxic Substances to Schedule 1 to the Canadian Environmental Protection Act. 1999. Available online: http://www.gazette.gc.ca/rp-pr/p2/2012/2012-03-28/html/sor-dors40-eng.html (accessed on 26 April 2012).
[142]  European Union. Amending Directive 2002/72/EC as Regards the Restriction of Use of Bisphenol A in Plastic Feeding Bottles. 2002. Available online: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:026:0011:0014:EN:PDF (accessed on 21 July 2012).
[143]  Canada Bans BPA from Baby Bottles. Available online: http://www.washingtonpost.com/wp-dyn/content/article/2008/04/18/AR2008041803036.html (accessed on 26 April 2012).
[144]  Bouskine, A.; Nebout, M.; Mograbi, B.; Brucker-Davis, F.; Roger, C.; Fenichel, P. Estrogens promote human testicular germ cell cancer through a membrane-mediated activation of extracellular regulated kinase and protein kinase A. Endocrinology 2008, 149, 565–573.
[145]  Bulayeva, N.N.; Watson, C.S. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ. Health Perspect. 2004, 112, 1481–1487, doi:10.1289/ehp.7175.
[146]  Otto, C.; Fuchs, I.; Altmann, H.; Klewer, M.; Schwarz, G.; Bohlmann, R.; Nguyen, D.; Zorn, L.; Vonk, R.; Prelle, K.; Osterman, T.; Malmstrom, C.; Fritzemeier, K.H. In vivo characterization of estrogen receptor modulators with reduced genomic versus nongenomic activity in vitro. J. Steroid Biochem. Mol. Biol. 2008, 111, 95–100, doi:10.1016/j.jsbmb.2008.05.003.
[147]  Yang, J.; Cao, J.; Sun, X.; Feng, Z.; Hao, D.; Zhao, X.; Sun, C. Effects of long-term exposure to low levels of organophosphorous pesticides and their mixture on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochem. Funct. 2012, 30, 122–128, doi:10.1002/cbf.1825.
[148]  Reffstrup, T.K.; Larsen, J.C.; Meyer, O. Risk assessment of mixtures of pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol. 2010, 56, 174–192, doi:10.1016/j.yrtph.2009.09.013.
[149]  Watson, C.S.; Bulayeva, N.N.; Wozniak, A.L.; Alyea, R.A. Xenoestrogens are potent activators of nongenomic estrogenic responses. Steroids 2007, 72, 124–134, doi:10.1016/j.steroids.2006.11.002.
[150]  Boobis, A.; Budinsky, R.; Collie, S.; Crofton, K.; Embry, M.; Felter, S.; Hertzberg, T.; Kopp, D.; Mihlan, G.; Mumtaz, M.; Price, P.; Solomon, K.; Teuschler, L.; Yang, R.; Zaleski, R. Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment. Crit. Rev. Toxicol. 2011, 41, 369–383, doi:10.3109/10408444.2010.543655.
[151]  ATSDR. DDT, DDE, and DDD. Available online: http://www.atsdr.cdc.gov/PHS/PHS.asp?id=79&tid=20 (accessed on 21 July 2012).
[152]  US EPA. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures; EPA/630/R-00/002. Available online: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=20533 (accessed on 21 July 2012).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133