Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring litter application, optimum grazing management and filter strip with a VFS ratio of 42 could be a promising alternative for use in mitigating future climate change.
References
[1]
USDA-NRCS (Natural Resources Conservation Service). Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Upper Mississippi River Basin, 2010, Available online: http://www.nrcs.usda.gov/Technical/nri/ceap/umrb/index.html (accessed on 15 March 2011).
[2]
Gale, J.A.; Line, D.E.; Osmond, D.L.; Coffey, S.W.; Spooner, J.; Arnold, J.A.; Hoban, T.J.; Wimberley, R.C. Evaluation of the Experimental Rural Clean Water Program; EPA-841-R-93-005; NCSU Water Quality Group, Biological and Agricultural Engineering Department, North Carolina State University: Raleigh, NC, USA, 1993.
[3]
Harmel, R.D.; Rossi, C.G.; Dybala, T.; Arnold, J.; Potter, K.; Wolfe, J.; Hoffman, D. Conservation effects assessment project research in the Leon River and Riesel watersheds. J. Soil Water Conserv. 2008, 63, 453–460, doi:10.2489/jswc.63.6.453.
[4]
Webber, D.F.; Mickelson, S.K.; Ahmed, S.I.; Russell, J.R.; Powers, W.J.; Schultz, R.C.; Kovar, J.L. Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses. J. Soil Water Conserv. 2010, 65, 34–41, doi:10.2489/jswc.65.1.34.
[5]
Chaubey, I.; Chiang, L.; Gitau, M.W.; Sayeed, M. Effectiveness of BMPs in improving water quality in a pasture dominated watershed. J. Soil Water Conserv. 2010, 65, 424–437, doi:10.2489/jswc.65.6.424.
[6]
Gitau, M.W.; Gburek, W.J.; Jarrett, A.R. A tool for estimating best management practice effectiveness for phosphorus pollution control. J. Soil Water Conserv. 2005, 60, 1–10.
[7]
Merriman, K.R.; Gitau, M.W.; Chaubey, I. Tool for estimating best management practice effectiveness in Arkansas. Appl. Eng. Agric. 2009, 25, 199–213.
[8]
Locke, M.A.; Knight, S.S.; Smith, S.; Cullum, R.F.; Zablotowicz, R.M.; Yuan, Y.; Bingner, R.L. Environmental quality research in the Beasley Lake watershed, 1995 to 2007: Succession from conventional to conservation practices. J. Soil Water Conserv. 2008, 63, 430–442, doi:10.2489/jswc.63.6.430.
[9]
Smith, D.R.; Livingston, S.J.; Zuercher, B.W.; Larose, M.; Heathman, G.C.; Huang, C. Nutrient losses from row crop agriculture in Indiana. J. Soil Water Conserv. 2008, 63, 396–409, doi:10.2489/jswc.63.6.396.
[10]
Yuan, Y.; Locke, M.A.; Bingner, R.L. Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment. J. Soil Water Conserv. 2008, 63, 542–551, doi:10.2489/jswc.63.6.542.
[11]
Bracmort, K.S.; Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J.G. Modeling long-term water quality impact of structural BMPs. Trans. ASABE 2006, 49, 367–374.
[12]
Alibuyong, N.R.; Ella, V.B.; Reyes, M.R.; Srinivasan, R.; Heatwole, C.; Dillaha, T. Predicting the effects of land use change on runoff and sediment yield in Manupali River subwatersheds using the SWAT model. Int. Agr. Eng. J. 2009, 18, 15–25.
[13]
Kay, A.L.; Davies, H.N.; Bell, V.A.; Jones, R.G. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Climatic Change 2009, 92, 41–63, doi:10.1007/s10584-008-9471-4.
[14]
Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrol. Process. 2009, 24, 892–903.
[15]
Crooks, S.; Davies, H. Assessment of land use change in the Thames Catchment and its effect on the flood regime of the river. Phys. Chem. Earth (B) 2001, 26, 583–591, doi:10.1016/S1464-1909(01)00053-3.
[16]
Edwards, D.R.; Daniel, T.C.; Scott, H.D.; Murdoch, J.F.; Habiger, M.J.; Burks, H.M. Stream quality impacts of best management practices in a Northwestern Arkansas Basin. Water Resour. Bull. 1996, 32, 499–509, doi:10.1111/j.1752-1688.1996.tb04048.x.
[17]
DeLaune, P.B.; Haggard, B.E.; Daniel, T.C.; Chaubey, I.; Cochran, M.J. The Eucha/Spavinaw phosphorus index: A court mandated index for litter management. J. Soil Water Conserv. 2006, 61, 96–105.
[18]
DeLaune, P.B.; Moore, P.A.; Carman, D.K.; Sharpley, A.N.; Haggard, B.E.; Daniel, T.C. Development of a phosphorus index for pastures fertilized with poultry litter-Factors affecting phosphorus runoff. J. Environ. Qual. 2004, 33, 2183–2191, doi:10.2134/jeq2004.2183.
[19]
Vendrell, P.F.; Steele, K.F.; Nelson, M.A.; Cash, L.W.; McNew, R.W. Extended Water Quality Monitoring of the Lincoln Lake Watershed; Arkansas Water Resources Center Publication No. MSC-296; Arkansas Soil and Water Conservation Commission: Little Rock, AR, USA, 2001.
[20]
Nelson, M.A.; Cash, L.W.; Trost, G.K. Water quality monitoring of Moores Creek above Lincoln Lake 2006 and 2007, 2008unpublished manuscript.
[21]
Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment-Part 1: Model development. J. Am. Water Resour. 1998, 34, 73–89, doi:10.1111/j.1752-1688.1998.tb05961.x.
[22]
Gassman, P.W.; Osei, E.; Saleh, A.; Rodecap, J.; Norvell, S.; Williams, J. Alternative practices for sediment and nutrient loss control on livestock farms in Northeast Iowa. Agr. Ecosyst. Environ. 2006, 117, 135–144, doi:10.1016/j.agee.2006.03.030.
[23]
U.S. Geological Survey (USGS). USGS Geographic Data Download. 2004. Available online: http://edc2.usgs.gov/geodata/index.php (accessed on 5 April 2007).
[24]
Center for Advanced Spatial Technologies (CAST). Land Use/Land Cover Data. 2004. Available online: http://www.cast.uark.edu/cast/geostor/ (accessed on 5 April 2007).
[25]
Gitau, M.W.; Chaubey, I.; Gbur, E.; Pennington, J.H.; Gorham, B. Impacts of land-use change and best management practice implementation in a Conservation Effects Assessment Project watershed: Northwest Arkansas. J. Soil Water Conserv. 2010, 65, 6353–6368.
[26]
26. Pennington, J.H.; Steele, M.A.; Teague, K.A.; Kurz, B.; Gbur, E.; Popp, J.; Rodriguez, G.; Chaubey, I.; Gitau, M.W.; Nelson, M.A. Breaking ground A cooperative approach to collecting information on conservation practices from an initially uncooperative population. J. Soil Water Conserv. 2008, 63, 208–211, doi:10.2489/jswc.63.6.208A.
[27]
Chiang, L.; Chaubey, I.; Gitau, M.W.; Arnold, J.G. Differentiating impacts of land use changes from pasture management in a CEAP watershed using SWAT model. Trans. ASABE 2010, 53, 1569–1584.
[28]
Moore, P.A.; Edwards, D.R. Long-term effects of poultry litter, alum-treated litter, and ammonium nitrate on aluminum availability soils. J. Environ. Qual. 2005, 34, 2104–2111, doi:10.2134/jeq2004.0472.
Lee, K.H.; Isenhart, T.M.; Schultz, R.C. Sediment and nutrient removal in an established multi-species riparian buffer. J. Soil Water Conserv. 2003, 58, 1–8.
[31]
Dorioz, J.M.; Wang, D.; Poulenard, J. Trevisan, D. The effect of grass buffer strips on phosphorus dynamics-A critical review and synthesis as a basis for application in agricultural landscapes in France. Agr. Ecosyst. Environ. 2006, 117, 4–21, doi:10.1016/j.agee.2006.03.029.
[32]
Chaubey, I.; Edwards, D.R.; Daniel, T.C.; Moore, P.A.; Nichols, D.J. Effectiveness of vegetative filter strips in controlling losses of surface-applied poultry litter constituents. Trans. ASABE 1995, 38, 1687–1692.
[33]
Mendez, A.; Dillaha, T.A.; Mostaghimi, S. Sediment and nitrogen transport in grass filter strips. J. Am. Water Resour. 1999, 35, 867–875, doi:10.1111/j.1752-1688.1999.tb04180.x.
[34]
Blanco-Canqui, H.; Gantzer, C.J.; Anderson, S.H.; Alberts, E.E.; Thompson, A.L. Grass barrier and vegetative filter strip effectiveness in reducing runoff, sediment, nitrogen, and phosphorus loss. Soil Sci. Soc. Am. J. 2004, 68, 1670–1678, doi:10.2136/sssaj2004.1670.
Dosskey, M.G.; Helmers, M.J.; Eisenhauer, D.E.; Franti, T.G.; Hoagland, K.D. Assessment of concentrated flow through riparian buffers. J. Soil Water Conserv. 2002, 57, 336–343.
[37]
Dosskey, M.G.; Eisenhauer, D.E.; Helmers, M.J. Establishing conservation buffers using precision information. J. Soil Water Conserv. 2005, 60, 349–354.
[38]
Bren, L.J. A case study in the use of threshold measures of hydrologic loading in the design of stream buffer strips. Forest Ecol. Manag. 2000, 132, 243–257, doi:10.1016/S0378-1127(99)00230-3.
[39]
Mander, U.; Kuusemets, V.; Lohmus, K.; Mauring, T. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecol. Eng. 1997, 8, 299–324, doi:10.1016/S0925-8574(97)00025-6.
[40]
White, M.J.; Arnold, J.G. Development of a simplistic vegetative filter strip model for sediment and nutrient retention at the field scale. Hydrol. Process. 2009, 23, 1602–1616, doi:10.1002/hyp.7291.
[41]
White, K.L.; Chaubey, I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. J. Am. Water Resour. 2005, 41, 1077–1089, doi:10.1111/j.1752-1688.2005.tb03786.x.
[42]
Madsen, H. Parameter estimation in distributed hydrological catchment modeling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216, doi:10.1016/S0309-1708(02)00092-1.
[43]
Cambell, K.L.; Edwards, D.R. Phosphorus and Water Quality Impacts. In Agricultural Nonpoint Source Pollution; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 91–109.
[44]
Nearing, M.A.; Norton, L.D.; Zhang, X. Soil Erosion and Sedimentation. In Agricultural Nonpoint Source Pollution: Watershed Management and Hydrology; Lewis Publishers: Boca Raton, FL, USA, 2001; pp. 29–58.
[45]
Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. J. Hydrol. 1970, 10, 282–290, doi:10.1016/0022-1694(70)90255-6.
[46]
Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900.
[47]
Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of tbe swat model on a large river basin with point and nonpoint sources. J. Am. Water Resour. 2001, 37, 1169–1188, doi:10.1111/j.1752-1688.2001.tb03630.x.
[48]
Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASABE 2003, 46, 1539–1551.
[49]
University of Arkansas Cooperative Extension Service (UAEX). Forage and Pasture Forage Management Guides. Self-Study Guide 5: Utilization of Forages by Beef Cattle, 2006. Available online: http://www.aragriculture.org/forage_pasture/Management_Guide/Forages_Self_Help_Guide5. htm (accessed on 15 July 2007).
[50]
Lowrance, R.; Dabney, S.; Schultz, R. Improving water and soil quality with conservation buffers. J. Soil Water Conserv. 2002, 57, 36–43.
[51]
USDA-Natural Resources Conservation Service (NRCS). CORE4 Conservation Practices Training Guide: The Common Sense Approach to Natural Resource Conservation; USDA-NRCS: Austin, TX, USA, 1999.
[52]
Naiman, R.J.; Decamps, H.; Pollock, M. The role of riparian corridors in maintaining regional biodiversity. Ecol. Appl. 1993, 3, 209–212, doi:10.2307/1941822.
[53]
USDA-NRCS. Using RUSLE2 for the Design and Predicted Effectiveness of Vegetative Filter Strips (VFS) for Sediment. Available online: http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1043476.pdf (accessed on 5 April 2007).
[54]
Dillaha, T.A.; Hayes, J.C. A Procedure for the Design of Vegetative Filter Strips; U.S. Department of Agriculture: Washington, DC, USA, 1991.
[55]
Liu, X.M.; Mang, X.Y.; Zhang, M.H. Major factors influencing the efficacy of vegetated buffers on sediment trapping: A review and analysis. J. Environ. Qual. 2008, 37, 1667–1674, doi:10.2134/jeq2007.0437.
[56]
Shreve, B.R.; Moore, P.A.; Daniel, T.C.; Edwards, D.R.; Miller, D.M. Reduction of phosphorus in runoff from field-applied poultry litter using chemical amendments. J. Environ. Qual. 1995, 24, 106–111.
[57]
Moore, P.A.; Edwards, D.R. Long-term effects of poultry litter, alum-treated litter, and ammonium nitrate on phosphorus availability in soils. J. Environ. Qual. 2007, 36, 163–174, doi:10.2134/jeq2006.0009.
[58]
Gilmour, J.T.; Koehler, M.A.; Cabrera, M.L.; Szajdak, L.; Moore, P.A. Alum treatment of poultry litter: Decomposition and nitrogen dynamics. J. Environ. Qual. 2004, 33, 402–405, doi:10.2134/jeq2004.0402.
[59]
Lin, Y.-P.; Hong, N.-M.; Wu, P.-J.; Lin, C.-J. Modeling and assessing land-use and hydrological processes to future land-use and climate change scenarios in watershed land-use planning. Environ. Geol. 2007, 53, 623–634, doi:10.1007/s00254-007-0677-y.
[60]
Tung, C.P.; Lee, T.Y.; Yang, Y.C. Modeling climate change impacts on stream temperature of Formosan Landlocked Salmon habitat. Hydrol. Process. 2005, 20, 1629–1649.
[61]
Tung, C.P.; Haith, D.A. Global-warming effects on New York streamflows. J. Water Resour. Plan. Manag. ASCE 1995, 121, 216–225, doi:10.1061/(ASCE)0733-9496(1995)121:2(216).
[62]
Arabi, M.; Frankenberger, J.R.; Engel, B.; Arnold, J.G. Representation of agricultural management practices with SWAT. Hydrol. Process. 2008, 22, 3042–3055, doi:10.1002/hyp.6890.
[63]
Santhi, C.; Williams, J.R.; Dugas, W.A.; Arnold, J.G.; Srinivasan, R.; Hauck, L.M. Water Quality Modeling of Bosque River Watershed to Support TMDL Analysis. In Total Maximum Daily Load (TMDL) Environmental Regulations: Proceedings of the March 11-13, 2002 Conference; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2002.
[64]
U.S. Environmental Protection Agency (USEPA). National Management Measures to Control Nonpoint Source Pollution from Agriculture; EPA 841-B-03-004; U.S. Environmental Protection Agency: Washington, DC, USA, 2003.
[65]
Mullan, D.J.; Favis-Mortlock, D.T.; Fealy, R. Addressing key limitations associated with modelling soil erosion under the impacts of future climate change. Agr. Forest Meteorol. 2012, 156, 18–30, doi:10.1016/j.agrformet.2011.12.004.
[66]
Taner, M.ü.; Carleton, J.N.; Wellman, M. Integrated model projections of climate change impacts on a North American lake. Ecol. Model. 2011, 222, 3380–3393, doi:10.1016/j.ecolmodel.2011.07.015.
[67]
Woznicki, S.A.; Nejadhashemi, A.P.; Smith, C.M. Assessing best management practice implementation strategies under climate change scenarios. Trans. ASABE 2011, 54, 171–190.
[68]
van Liew, M.W.; Feng, S.; Pathak, T.B. Climate change impacts on streamflow, water quality, and best management practices for the shell and logan creek watersheds in Nebraska. Int. J. Agric. Biol. Eng. 2012, 5, 13–34.
[69]
Zhang, L.; Lu, W.X.; An, Y.L.; Li, D.; Gong, L. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment. Environ. Monit. Assess. 2012, 184, 581–594, doi:10.1007/s10661-011-2353-7.
[70]
Wu, Y.P.; Liu, S.G.; Gallant, A.L. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Sci. Total Environ. 2012, 430, 150–160, doi:10.1016/j.scitotenv.2012.04.058.
[71]
McCarty, G.W.; McConnell, L.L.; Hapernan, C.J.; Sadeghi, A.; Graff, C.; Hively, W.D.; Lang, M.W.; Fisher, T.R.; Jordan, T.; Rice, C.P.; Codling, E.E.; Whitall, D.; Lynn, A.; Keppler, J.; Fogel, M.L. Water quality and conservation practice effects in the Choptank River watershed. J. Soil Water Conserv. 2008, 63, 461–474, doi:10.2489/jswc.63.6.461.
[72]
Feyereisen, G.W.; Lowrance, R.; Strickland, T.C.; Bosch, D.D.; Sheridan, J.M. Long-term stream chemistry trends in the southern Georgia Little River Experimental Watershed. J. Soil Water Conserv. 2008, 63, 475–486, doi:10.2489/jswc.63.6.475.
[73]
Kuhnle, R.A.; Bingner, R.L.; Alonso, C.V.; Wilson, C.G.; Simon, A. Conservation practice effects on sediment load in the Goodwin Creek Experimental Watershed. J. Soil Water Conserv. 2008, 63, 496–503, doi:10.2489/jswc.63.6.496.