全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Leukemia and Benzene

DOI: 10.3390/ijerph9082875

Keywords: benzene, bone marrow, niche, leukemia, benzene metabolism, stem cells, cell signaling, signal transduction, cytokines, cancer stem cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called “second cancer” that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called “niches” that house a variety of stem cells and other types of cells. Some of these “niches” may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology.

References

[1]  Snyder, R.; Kocsis, J.J. Current concepts of chronic benzene toxicity. CRC Crit. Rev. Toxicol. 1975, 3, 265–288, doi:10.3109/10408447509079860.
[2]  Hunter, D. The Diseases of Occupations, 3rd ed.; Little Brown and Co.: Boston, MA, USA, 1962.
[3]  Snyder, R.; Witz, G.; Goldstein, B.D. The toxicology of benzene. Environ. Health Perspect. 1993, 100, 293–306, doi:10.1289/ehp.93100293.
[4]  Santesson, C.G. über chronische vegiftungen mit steinkohlenteerbenzin: Vier todesf?lle. Arch. Hyg. Berl. 1897, 31, 336–376.
[5]  Wilson, A.; Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 2006, 6, 93–106, doi:10.1038/nri1779.
[6]  Burness, M.L.; Sipkins, D.A. The stem cell niche in health and malignancy. Semin. Cancer Biol. 2010, 20, 107–115, doi:10.1016/j.semcancer.2010.05.006.
[7]  Metcalf, D. Hematopoetic cytokines. Blood 2007, 111, 485–491, doi:10.1182/blood-2007-03-079681.
[8]  Newell, L.C. Faraday’s discovery of benzene. J. Chem. Educ. 1926, 3, 1248–1253, doi:10.1021/ed003p1248.
[9]  World Bank Group. Coke Manufacturing: Pollution Prevention and Abatement Handbook; World Bank Group: Washington, DC, USA, 1998.
[10]  Hofmann, A.W. Ueber eine sichere reaction auf benzol (on a reliable test for benzene). Liebigs Ann. 1845, 55, 200–205, doi:10.1002/jlac.18450550205.
[11]  Riegel, E.R. Reference. In The Distillation of Coal, Coke, Tar, and Ammonia, 5th ed.; Reinhold Publishing Corp: New York, NY, USA, 1949.
[12]  Batchelder, H.R. Chemicals from coal. Ind. Eng. Chem. Prod. Res. Dev. 1970, 9, 341–343, doi:10.1021/i360035a014.
[13]  Production of major commodity chemicals. Chem. Eng. News 1991, 77, 35.
[14]  United States Environmental Protection Agency (USEPA). Carcinogenic Effects of Benzene: An Update; EPA/600/P-97/001F; USEPA: Washington, DC, USA, 1998.
[15]  Ramazzini, B. Reference. In Diseases of Workers; Hafner Publishing Company: New York, NY, USA, 1964.
[16]  Uglow, J. Reference. In Lunar Men: Five Friends Whose Curiosity Changed the World; Farrar Straus and Giroux: New York, NY, USA, 2002.
[17]  Selling, L. A preliminary report of some cases of purpura haemorrhagica due to benzol poisoning. Bull. John Hopkins Hosp. 1910, 12, 33–37.
[18]  Selling, L. Benzol as a leucotoxin. Bull. John Hopkins Hosp. 1916, 17, 83–148.
[19]  Weiskotten, H.G.; Gibbs, C.B.; Boggs, E.O.; Templeton, E.R. The action of benzol: VI. Benzol vapor leucopenia (rabbit). J. Med. Res. 1920, 41, 425–438.
[20]  Kalf, G.F.; Snyder, R. Survey of Mechanistic Studies on Benzene-Induced Leukemia in: Update on Benzene. In Clinica del Lavoro Foundation; Imbriani, M., Ghittori, S., Capodaglio, E., Eds.; Fondazione Salvatore Maugeri Edizioni: Pavia, Italy, 1995; pp. 39–68.
[21]  Snyder, R.; Kalf, G.F. A perspective on benzene leukemogenesis. Crit. Rev. Toxicol. 1994, 24, 177–209.
[22]  Snyder, R. Benzene and leukemia. Crit. Rev. Toxicol. 2002, 32, 155–210.
[23]  Hamilton, A. Reference. In Exploring the Dangerous Trades: The Autobiography of Alice Hamilton, M.D.; Little Brown and Co.: Boston, MA, USA, 1943.
[24]  Freireich, E.J.; Lemak, N.A. Reference. In Milestones in Leukemia Research and Therapy; Johns Hopkins University Press: Baltimore, MD, USA, 1991.
[25]  Seufert, W.; Seufert, W.D. The recognition of leukemia as a systemic disease. J. Hist. Med. Allied Sci. 1982, 37, 34–50, doi:10.1093/jhmas/XXXVII.1.34.
[26]  Vardiman, J.W. The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: An overview with emphasis on the myeloid neoplasms. Chem. Biol. Interact 2010, 184, 16–20, doi:10.1016/j.cbi.2009.10.009.
[27]  Le Noir, M.M.; Claude, H. A case of purpura attributed to benzene poisoning. Bull. Med. Hop. Paris 1897, 14, 51–160.
[28]  Delore, P.; Borgomano, C. Leucemie aigue au cours de la Intoxication benzenique. J. Méd. Lyon 1928, 9, 227–233.
[29]  Falconer, E.H. An instance of lymphatic leukemias following benzol poisoning. Am. J. Med. Sci. 1933, 186, 353–361, doi:10.1097/00000441-193309000-00005.
[30]  Penati, F.; Vigliani, E.C. Sul problema delle mielopatie asplische pseudo-apalastische e leucemiche da benzolo. Rass. Med. Ind. 1938, 9, 345–361.
[31]  Vigliani, E.C.; Forni, A. Benzene and leukemia. Environ. Res. 1976, 11, 122–127, doi:10.1016/0013-9351(76)90115-8.
[32]  Aksoy, M.; Erdem, S.; DinCol, G. Leukemia in shoe-workers exposed chronically to benzene. Blood 1974, 44, 837–841.
[33]  Infante, P.F.; Rinsky, R.A.; Wagoner, J.K.; Young, R.J. Leukaemia in benzene workers. Lancet 1977, 2, 76–78.
[34]  Yin, S.N.; Hayes, R.B.; Linet, M.S.; Li, G.L.; Dosemeci, M.; Travis, L.B.; Zhang, Z.N.; Li, D.G.; Chow, W.H.; Wacholder, S.; et al. An expanded cohort study of cancer among benzene-exposed workers in China. Benzene Study Group. Environ. Health Perspect. 1996, 104, 1339–1341.
[35]  Williams, R.T. Reference. In Detoxication Mechansisms: The Metabolism of Drugs and Allied Organic Compounds; John Wiley and Sons Inc: New York, NY, USA, 1947.
[36]  Parke, D.V.; Williams, R.T. Studies in detoxication. XLIX. The metabolism of benzene containing (14C1) benzene. Biochem. J. 1953, 54, 231–238.
[37]  Parke, D.V.; Williams, R.T. Studies in detoxication. 54. The metabolism of benzene. (a) The formation of phenylglucuronide and phenylsulphuric acid from (14C)benzene. (b) The metabolism of (14C)phenol. Biochem. J. 1953, 55, 337–340.
[38]  Snyder, R.; Hedli, C.C. An overview of benzene metabolism. Environ. Health Perspect. 1996, 104, 1165–1171.
[39]  Lau, S.S.; Kuhlman, C.L.; Bratton, S.B.; Monks, T.J. Role of hydroquinone-thiol conjugates in benzene-mediated toxicity. Chem. Biol. Interact. 2010, 184, 212–217, doi:10.1016/j.cbi.2009.12.016.
[40]  Hoffman, R.; Benz, E.; Shattil, S.; Furie, B.; Cohen, H. Hematology: Basic Principles and Practice; Churchill Livingstone: New York, NY, USA, 1991.
[41]  Till, J.E.; McCulloch, E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 1961, 14, 213–222, doi:10.2307/3570892.
[42]  Becker, A.J.; McCulloch, E.A.; Till, J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963, 197, 452–454.
[43]  Siminovitch, L.; McCulloch, E.A.; Till, J.E. The distribution of colony-forming cells among spleen colonies. J. Cell Physiol. 1963, 62, 327–336, doi:10.1002/jcp.1030620313.
[44]  Uyeki, E.M.; Ashkar, A.E.; Shoeman, D.W.; Bisel, T.U. Acute toxicity of benzene inhalation to hemopoietic precursor cells. Toxicol. Appl. Pharmacol. 1977, 40, 49–57, doi:10.1016/0041-008X(77)90115-6.
[45]  Gill, D.P.; Jenkins, V.K.; Kempen, R.R.; Ellis, S. The importance of pluripotential stem cells in benzene toxicity. Toxicology 1980, 16, 163–171, doi:10.1016/0300-483X(80)90046-3.
[46]  Green, J.D.; Snyder, C.A.; LoBue, J.; Goldstein, B.D.; Albert, R.E. Acute and chronic dose/response effects of inhaled benzene on multipotential hematopoietic stem (CFU-S) and granulocyte/macrophage progenitor (GM-CFU-C) cells in CD-1 mice. Toxicol. Appl. Pharmacol. 1981, 58, 492–503, doi:10.1016/0041-008X(81)90102-2.
[47]  Harigaya, K.; Miller, M.E.; Cronkite, E.P.; Drew, R.T. The detection of in vivo hematotoxicity of benzene by in vitro liquid bone marrow cultures. Toxicol. Appl. Pharmacol. 1981, 60, 346–353, doi:10.1016/0041-008X(91)90237-9.
[48]  Bradley, T.R.; Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 1966, 44, 287–299.
[49]  Ichikawa, Y.; Pluznik, D.H.; Sachs, L. In vitro control of the development of macrophage and granulocyte colonies. Proc. Natl. Acad. Sci. USA 1966, 56, 488–495, doi:10.1073/pnas.56.2.488.
[50]  Pluznik, D.H.; Sachs, L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp. Cell Res. 1966, 43, 553–563, doi:10.1016/0014-4827(66)90026-7.
[51]  United States Environmental Protection Agency (USEPA). Toxicological Review of Benzene (Noncancer Effects); EPA/635/R-02/001F; USEPA: Washington, DC, USA, 2002.
[52]  Hilderbrand, R.L.; Murphy, M.J., Jr. The effects of benzene inhalation on murine hematopoietic precursor cells (CFU-e, BFU-e and CFU-gm). Int. J. Cell Cloning 1983, 1, 240–253, doi:10.1002/stem.5530010405.
[53]  Rane, S.G.; Reddy, E.P. JAKs, STATs and Src kinases in hematopoiesis. Oncogene 2002, 21, 3334–3358, doi:10.1038/sj.onc.1205398.
[54]  Smith, K.A.; Griffin, J.D. Following the cytokine signaling pathway to leukemogenesis: A chronology. J. Clin. Invest. 2008, 118, 3564–3573, doi:10.1172/JCI35819.
[55]  Rous, P. A transmissable avian neoplasm (Sarcoma of the common fowl). J. Exp. Med. 1910, 12, 696–670, doi:10.1084/jem.12.5.696.
[56]  Collett, M.S.; Erikson, R.L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA 1978, 75, 2021–2024.
[57]  Martin, G.S. The road to Src. Oncogene 2004, 23, 7910–7917, doi:10.1038/sj.onc.1208077.
[58]  Corey, S.J.; Anderson, S.M. Src-related protein tyrosine kinases in hematopoiesis. Blood 1999, 93, 1–14.
[59]  Parsons, S.J.; Parsons, J.T. Src family kinases, key regulators of signal transduction. Oncogene 2004, 23, 7906–7909, doi:10.1038/sj.onc.1208160.
[60]  Li, E.; Hristova, K. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adhes. Migr. 2010, 4, 249–254, doi:10.4161/cam.4.2.10725.
[61]  Li, E.; Wimley, W.C.; Hristova, K. Transmembrane helix dimerization: Beyond the search for sequence motifs. Biochim. Biophys. Acta 1818, 183–193.
[62]  Baker, S.J.; Rane, S.G.; Reddy, E.P. Hematopoietic cytokine receptor signaling. Oncogene 2007, 26, 6724–6737, doi:10.1038/sj.onc.1210757.
[63]  Bugarski, D.; Krstic, A.; Mojsilovic, S.; Vlaski, M.; Petakov, M.; Jovcic, G.; Stojanovic, N.; Milenkovic, P. Signaling pathways implicated in hematopoietic progenitor cell proliferation and differentiation. Exp. Biol. Med. (Maywood) 2007, 232, 156–163.
[64]  Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol. 2007, 19, 142–149, doi:10.1016/j.ceb.2007.02.001.
[65]  Butler, J.M.; Kobayashi, H.; Rafii, S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat. Rev. Cancer 2010, 10, 138–146, doi:10.1038/nrc2791.
[66]  Sottocornola, R.; Lo Celso, C. Dormancy in the stem cell niche. Stem Cell Res. Ther. 2012, 3, 10, doi:10.1186/scrt101.
[67]  Muller-Sieburg, C.E.; Sieburg, H.B.; Bernitz, J.M.; Cattarossi, G. Stem cell heterogeneity: Implications for aging and regenerative medicine. Blood 2012, 119, 3900–3907.
[68]  Dykstra, B.; de Haan, G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res. 2008, 331, 91–101, doi:10.1007/s00441-007-0529-9.
[69]  Rossi, D.J.; Bryder, D.; Seita, J.; Nussenzweig, A.; Hoeijmakers, J.; Weissman, I.L. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007, 447, 725–729.
[70]  Wang, J.; Sun, Q.; Morita, Y.; Jiang, H.; Gross, A.; Lechel, A.; Hildner, K.; Guachalla, L.M.; Gompf, A.; Hartmann, D.; et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 2012, 148, 1001–1014, doi:10.1016/j.cell.2012.01.040.
[71]  Wilson, A.; Laurenti, E.; Oser, G.; van der Wath, R.C.; Blanco-Bose, W.; Jaworski, M.; Offner, S.; Dunant, C.F.; Eshkind, L.; Bockamp, E.; et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008, 135, 1118–1129, doi:10.1016/j.cell.2008.10.048.
[72]  Mohrin, M.; Bourke, E.; Alexander, D.; Warr, M.R.; Barry-Holson, K.; Le Beau, M.M.; Morrison, C.G.; Passegue, E. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010, 7, 174–185, doi:10.1016/j.stem.2010.06.014.
[73]  Sullivan, D.M.; Latham, M.D.; Ross, W.E. Proliferation-Dependent topoisomerase II content as a determinant of antineoplastic drug action in human, mouse, and Chinese hamster ovary cells. Cancer Res. 1987, 47, 3973–3979.
[74]  Jordan, C.T. Cancer stem cells: Controversial or just misunderstood? Cell Stem Cell 2009, 4, 203–205, doi:10.1016/j.stem.2009.02.003.
[75]  Takebe, N.; Ivy, S.P. Controversies in cancer stem cells: Targeting embryonic signaling pathways. Clin. Cancer Res. 2010, 16, 3106–3112, doi:10.1158/1078-0432.CCR-09-2934.
[76]  Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737, doi:10.1038/nm0797-730.
[77]  Essigmann, J.M.; Croy, R.G.; Nadzan, A.M.; Busby, W.F., Jr.; Reinhold, V.N.; Buchi, G.; Wogan, G.N. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Proc. Natl. Acad. Sci. USA 1977, 74, 1870–1874.
[78]  Liang, Z.; Lippman, S.M.; Kawabe, A.; Shimada, Y.; Xu, X.C. Identification of benzo(a)pyrene diol epoxide-binding DNA fragments using DNA immunoprecipitation technique. Cancer Res. 2003, 63, 1470–1474.
[79]  Jowa, L.; Witz, G.; Snyder, R.; Winkle, S.; Kalf, G.F. Synthesis and characterization of deoxyguanosine-benzoquinone adducts. J. Appl. Toxicol. 1990, 10, 47–54, doi:10.1002/jat.2550100109.
[80]  Hedli, C.C.; Rao, N.R.; Reuhl, K.R.; Witmer, C.M.; Snyder, R. Effects of benzene metabolite treatment on granulocytic differentiation and DNA adduct formation in HL-60 cells. Arch. Toxicol. 1996, 70, 135–144, doi:10.1007/s002040050252.
[81]  Hutt, A.M.; Kalf, G.F. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene. Environ. Health Perspect. 1996, 104, 1265–1269.
[82]  Frantz, C.E.; Chen, H.; Eastmond, D.A. Inhibition of human topoisomerase II in vitro by bioactive benzene metabolites. Environ. Health Perspect. 1996, 104, 1319–1323.
[83]  Lindsey, R.H.; Bender, R.P.; Osheroff, N. Stimulation of topoisomerase II-mediated DNA cleavage by benzene metabolites. Chem. Biol. Interact. 2005, 153-154, 197–205, doi:10.1016/j.cbi.2005.03.035.
[84]  Longacre, S.L.; Kocsis, J.J.; Snyder, R. Influence of strain differences in mice on the metabolism and toxicity of benzene. Toxicol. Appl. Pharmacol. 1981, 60, 398–409, doi:10.1016/0041-008X(81)90324-0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133