全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Relative Pesticide and Exposure Route Contribution to Aggregate and Cumulative Dose in Young Farmworker Children

DOI: 10.3390/ijerph9010073

Keywords: children, farmworker, organophosphate pesticides, physiologically-based pharmacokinetic, risk, micro-activity, mixtures

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Child-Specific Aggregate Cumulative Human Exposure and Dose (CACHED) framework integrates micro-level activity time series with mechanistic exposure equations, environmental concentration distributions, and physiologically-based pharmacokinetic components to estimate exposure for multiple routes and chemicals. CACHED was utilized to quantify cumulative and aggregate exposure and dose estimates for a population of young farmworker children and to evaluate the model for chlorpyrifos and diazinon. Micro-activities of farmworker children collected concurrently with residential measurements of pesticides were used in the CACHED framework to simulate 115,000 exposure scenarios and quantify cumulative and aggregate exposure and dose estimates. Modeled metabolite urine concentrations were not statistically different than concentrations measured in the urine of children, indicating that CACHED can provide realistic biomarker estimates. Analysis of the relative contribution of exposure route and pesticide indicates that in general, chlorpyrifos non-dietary ingestion exposure accounts for the largest dose, confirming the importance of the micro-activity approach. The risk metrics computed from the 115,000 simulations, indicate that greater than 95% of these scenarios might pose a risk to children’s health from aggregate chlorpyrifos exposure. The variability observed in the route and pesticide contributions to urine biomarker levels demonstrate the importance of accounting for aggregate and cumulative exposure in establishing pesticide residue tolerances in food.

References

[1]  Fenske, R.A.; Kissel, J.C.; Lu, C.S.; Kalman, D.A.; Simcox, N.J.; Allen, E.H.; Keifer, M.C. Biologically based pesticide dose estimates for children in an agricultural community. Environ. Health Perspect. 2000, 108, 515–520, doi:10.1289/ehp.00108515. 10856024
[2]  Wilson, N.K.; Chuang, J.C.; Iachan, R.; Lyu, C.; Gordon, S.M.; Morgan, M.K.; Ozkaynak, H.; Sheldon, L.S. Design and sampling methodology for a large study of preschool children’s aggregate exposures to persistent organic pollutants in their everyday environments. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 260–274, doi:10.1038/sj.jea.7500326. 15141155
[3]  Bradman, A.; Whitaker, D.; Quiros, L.; Castorina, R.; Henn, B.C.; Nishioka, M.; Morgan, J.; Barr, D.B.; Harnly, M.; Brisbin, J.A.; et al. Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 331–349, doi:10.1038/sj.jes.7500507. 16736054
[4]  Barr, D.B.; Bravo, R.; Weerasekera, G.; Caltabiano, L.M.; Whitehead, R.D., Jr.; Olsson, A.O.; Caudill, S.P.; Schober, S.E.; Pirkle, J.L.; Sampson, E.J. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the US population. Environ. Health Perspect. 2004, 112, 186–200. 14754573
[5]  Hubal, E.A.C.; Sheldon, L.S.; Burke, J.M.; McCurdy, T.R.; Barry, M.R.; Rigas, M.L.; Zartarian, V.Z.; Freeman, N.C.G. Children’s exposure assessment: A review of factors influencing children’s exposure, and the data available to characterize and assess that exposure. Environ. Health Perspect. 2000, 108, 475–486. 10856019
[6]  Lu, C.; Holbrook, C.M.; Andres, L.M. The implications of using a Physiologically Based Pharmacokinetic (PBPK) model for pesticide risk assessment. Environ. Health Perspect. 2010, 118, 125–130. 20056589
[7]  Matoba, Y.; Takimoto, Y.; Kato, T. Indoor behavior and risk assessment following residual spraying of d-phenothrin and d-tetramethrin. Am. Ind. Hyg. Assoc. J. 1998, 59, 191–199, doi:10.1080/15428119891010451. 9530805
[8]  Baugher, D.G.; Bray, L.D.; Breckenridge, C.B.; Crouch, E.A.C.; Farrier, D.S.; MacIntosh, D.L.; Mellon, J.E.; Sielken, R.L.; Stevens, J.T. Cumulative and Aggregate Risk Evaluation System (CARES) Conceptual Model. In Proceedings of the FIFRA Scientific Advisory Panel Meeting, Arlington, VA, USA, 1999.
[9]  Price, P.S.; Young, J.S.; Chaisson, C.F. Assessing aggregate and cumulative pesticide risks using a probabilistic model. Ann. Occup. Hyg. 2001, 45, S131–S142. 11290359
[10]  Williams, P.R.D.; Holicky, K.C.; Paustenbach, D.J. Current methods for evaluating children’s exposure for use in health risk assessment. J. Child. Health 2003, 1, 41–98, doi:10.3109/713610246.
[11]  Pang, Y.H.; MacIntosh, D.L.; Camann, D.E.; Ryan, B. Analysis of aggregate exposure to chlorpyrifos in the NHEXAS-Maryland investigation. Environ. Health Perspect. 2002, 110, 235–240, doi:10.1289/ehp.02110235. 11882473
[12]  Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Jones, P.A.; Robertson, G.L.; Chuang, J.C.; Wilson, N.K.; Lyu, C.W. Exposures of preschool children to chlorpyrifos and its degradation product 3, 5, 6-trichloro-2-pyridinol in their everyday environments. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 297–309, doi:10.1038/sj.jea.7500406. 15367928
[13]  Wilson, N.K.; Chuang, J.C.; Lyu, C.; Menton, R.; Morgan, M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J. Expo. Sci. Environ. Epidemiol. 2003, 13, 187–202, doi:10.1038/sj.jea.7500270.
[14]  Beamer, P.I.; Canales, R.A.; Bradman, A.; Leckie, J.O. Farmworker children’s residential non-dietary exposure estimates from micro-level activity time series. Environ. Int. 2009, 35, 1202–1209, doi:10.1016/j.envint.2009.08.003. 19744713
[15]  Canales, R.A.; Leckie, J.O. Application of a stochastic model to estimate children’s short-term residential exposure to lead. Stoch. Environ. Res. Risk Assess. 2007, 21, 737–745, doi:10.1007/s00477-006-0086-x.
[16]  Melnyk, L.J.; Berry, M.R.; Sheldon, L.S. Dietary exposure from pesticide application on farms in the agricultural health pilot study. J. Expo. Anal. Environ. Epidemiol. 1997, 7, 61–80. 9076610
[17]  USEPA. Nonoccupational Pesticide Exposure Study (NOPES) Final Report; United States Environmental Protection Agency: Washington, DC, USA, 1990.
[18]  Bradman, M.A.; Harnly, M.E.; Draper, W.; Seidel, S.; Teran, S.; Wakeham, D.; Neutra, R. Pesticide exposures to children from California’s Central Valley: Results of a pilot study. J. Expo. Anal. Environ. Epidemiol. 1997, 7, 217–234. 9185013
[19]  Eskenazi, B.; Bradman, A.; Castorina, R. Exposures of children to organophosphate pesticides and their potential adverse health effects. Environ. Health Perspect. 1999, 107, 409–419, doi:10.1289/ehp.99107s3409. 10346990
[20]  Fenske, R.A.; Lu, C.S.; Simcox, N.J.; Loewenherz, C.; Touchstone, J.; Moate, T.F.; Allen, E.H.; Kissel, J.C. Strategies for assessing children’s organophosphorus pesticide exposures in agricultural communities. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 662–671, doi:10.1038/sj.jea.7500116. 11138658
[21]  Fenske, R.A.; Lu, C.S.; Barr, D.; Needham, L. Children’s exposure to chlorpyrifos and parathion in an agricultural community in Central Washington State. Environ. Health Perspect. 2002, 110, 549–553, doi:10.1289/ehp.02110549. 12003762
[22]  Beamer, P.; Key, M.E.; Ferguson, A.C.; Canales, R.A.; AuYeung, W.; Leckie, J.O. Quantified activity pattern data from 6-to-27-month-old farmworker children for use in exposure assessment. Environ. Res. 2008, 108, 239–246, doi:10.1016/j.envres.2008.07.007. 18723168
[23]  Bradman, A. Corrigendum: Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 694–695, doi:10.1038/jes.2008.58.
[24]  Beamer, P. Development of a Model to Estimate Aggregate and Cumulative Exposure and Dose in Young Children. 2007. PhD Dissertation submitted to Stanford University, Stanford, CA.
[25]  USEPA. Food Commodity Intake Database Version 2.1 [CD-ROM]; Office of Pesticide Programs and US Department of Agriculture, Agricultural Research Service: Springfield, VA, USA, 2000.
[26]  Beamer, P.I.; Leckie, J.O. Development of a cumulative and aggregate PBPK model for chlorpyrifos and diazinon. J. Expo. Sci. Environ. Epidemiol. 2011. in revision.
[27]  Timchalk, C.; Nolan, R.J.; Mendrala, A.L.; Dittenber, D.A.; Brzak, K.A.; Mattsson, J.L. A Physiologically Based Pharmacokinetic and Pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol. Sci. 2002, 66, 34–53, doi:10.1093/toxsci/66.1.34. 11861971
[28]  Poet, T.S.; Kousba, A.A.; Dennison, S.L.; Timchalk, C. Physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus pesticide diazinon. Neurotoxicology 2004, 25, 1013–1030, doi:10.1016/j.neuro.2004.03.002. 15474619
[29]  Nolan, R.J.; Rick, D.L.; Freshour, N.L.; Saunders, J.H. Chlorpyrifos—Pharmacokinetics in human volunteers. Toxicol. Appl. Pharmacol. 1984, 73, 8–15, doi:10.1016/0041-008X(84)90046-2. 6200956
[30]  Garfitt, S.J.; Jones, K.; Mason, H.J.; Cocker, J. Exposure to the organophosphate diazinon: Data from a human volunteer study with oral and dermal doses. Toxicol. Lett. 2002, 134, 105–113, doi:10.1016/S0378-4274(02)00178-9. 12191867
[31]  Griffin, P.; Mason, H.; Heywood, K.; Cocker, J. Oral and dermal absorption of chlorpyrifos: A human volunteer study. Occup. Environ. Med. 1999, 56, 10–13, doi:10.1136/oem.56.1.10. 10341740
[32]  Milsap, R.L.; Jusko, W.J. Pharmacokinetics in the infant. Environ. Health Perspect. 1994, 102, 107–110. 7737034
[33]  Price, P.S.; Conolly, R.B.; Chaisson, C.F.; Gross, E.A.; Young, J.S.; Mathis, E.T.; Tedder, D.R. Modeling interindividual variation in physiological factors used in PBPK models of humans. Crit. Rev. Toxicol. 2003, 33, 469–503. 14594104
[34]  International Commission on Radiological Protection. Report of the Task Group on Reference Man. International Committee on Radiological Protection; ICRP: Ottawa, Canada, 2003.
[35]  Poulin, P.; Krishnan, K. Molecular structure-based prediction of the partition coefficients of organic chemicals for physiological pharmacokinetic models. Toxicol. Mech. Methods 1996, 6, 117–137, doi:10.3109/15376519609068458.
[36]  International Commission on Radiological Protection. Report of the Task Group on Reference Man. International Committee on Radiological Protection; ICRP: Ottawa, Canada, 1975.
[37]  Ramsey, J.C.; Andersen, M.E. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmcol. 1984, 73, 159–175, doi:10.1016/0041-008X(84)90064-4.
[38]  Bjorkman, S. Prediction of drug disposition in infants and children by means of Physiologically Based Pharmacokinetic (PBPK) modelling: Theophylline and midazolam as model drugs. Br. J. Clin. Pharmacol. 2005, 59, 691–704, doi:10.1111/j.1365-2125.2004.02225.x. 15948934
[39]  Behrman, R.E.; Kliegman, R.M.; Jenson, H.B. Nelson Textbook of Pediatrics; Saunders: Philadelphia, PA, USA, 2004.
[40]  McNamara, P.J.; Alcorn, J. Protein binding predictions in infants. Am. Assoc. Pharm. Sci. J. 2002, 4, 19–26.
[41]  USEPA. Child-Specific Exposure Factors Handbook (Final Report); EPA/600/R-06/096F; United States Environmental Protection Agency: Washington, DC, USA, 2008.
[42]  Freeman, N.C.G.; Hore, P.; Black, K.; Jimenez, M.; Sheldon, L.; Tulve, N.; Lioy, P.J. Contributions of children’s activities to pesticide hand loadings following residential pesticide application. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 81–88, doi:10.1038/sj.jea.7500348. 15039793
[43]  Ferguson, A.C.; Canales, R.A.; Beamer, P.; AuYeung, W.; Key, M.; Munninghoff, A.; Lee, K.T.W.; Robertson, A.; Leckie, J.O. Video methods in the quantification of children’s exposures. J. Expo. Anal. Environ. Epidemiol. 2006, 16, 287–298, doi:10.1038/sj.jea.7500459.
[44]  Department of Pesticide Regulation, California Environmental Protection Agency. Pesticide Use Reporting 2002 Summary Data. Available online: http://www.cdpr.ca.gov/docs/pur/pur02rep/02_pur.htm (accessed on 3 January 2012).
[45]  USDA. Pesticide Data Program: Annual Summary Calendar Year 2002; United States Department of Agriculture: Washington, DC, USA, 2004.
[46]  Rappaport, S.M. Interpreting Levels of Exposures to Chemical Agents. In Patty’s Industrial Hygiene, 5th; Harris, R.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; Volume 1, pp. 679–745.
[47]  USEPA. Interim Reregistration Eligibility Decision for Chlorpyrifos; EPA 738-R-01-007; United States Environmental Protection Agency: Washington, DC, USA, 2002.
[48]  USEPA. Interim Reregistration Eligibility Decision for Diazinon; EPA 738-R-04-0006; United States Environmental Protection Agency: Washington, DC, USA, 2004.
[49]  USEPA. Organophosphorus Cumulative Risk Assessment—2006 Update; EPA-HQ-OPP-2006-0618; United States Environmental Protection Agency: Washington, DC, USA, 2006.
[50]  USEPA. General Principles for Performing Aggregate Exposure and Risk Assessments; Item No. 6043; United States Environmental Protection Agency: Washington, DC, USA, 2001.
[51]  USEPA. Interim Reregistration Eligibility Decision for Methamidphos; Case no. 0043; United States Environmental Protection Agency: Washington, DC, USA, 2002.
[52]  Gentry, P.R.; Covington, T.R.; Mann, S.; Shipp, A.M.; Yager, J.W.; Clewell, H.J. Physiologically based pharmacokinetic modeling of arsenic in the mouse. J. Toxicol. Environ. Health A 2004, 67, 43–71, doi:10.1080/15287390490253660. 14668111
[53]  Pelekis, M.; Gephart, L.A.; Lerman, S.E. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds. Regul. Toxicol. Pharmacol. 2001, 33, 12–20, doi:10.1006/rtph.2000.1436. 11259175
[54]  Clewell, R.A.; Gearhart, J.M. Pharmacokinetics of toxic chemicals in breast milk: Use of PBPK models to predict infant exposure. Environ. Health Perspect. 2002, 110, A333–A337, doi:10.1289/ehp.021100333. 12055064
[55]  Price, K.; Haddad, S.; Krishnan, K. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children. J. Toxicol. Environ. Health A 2003, 66, 417–433, doi:10.1080/15287390306450. 12712630
[56]  Ginsberg, G.; Hattis, D.; Sonawane, B. Incorporating pharmacokinetic differences between children and adults in assessing children’s risks to environmental toxicants. Toxicol. Appl. Pharmacol. 2004, 198, 164–183, doi:10.1016/j.taap.2003.10.010. 15236952
[57]  Melnyk, L.J.; Byron, M.Z.; Brown, G.G.; Clayton, C.A.; Michael, L.C. Pesticides on household surfaces may influence dietary intake of children. Environ. Sci. Technol. 2011, 45, 4594–4601, doi:10.1021/es104190k. 21517066
[58]  Akland, G.G.; Pellizzari, E.D.; Hu, Y.; Roberds, M.; Rohrer, C.A.; Leckie, J.O.; Berry, M.R. Factors influencing total dietary exposures of young children. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 710–722, doi:10.1038/sj.jea.7500129. 11138663
[59]  Bouchard, M.F.; Bellinger, D.C.; Wright, R.O.; Weisskopf, M.G. Attention-deficit/hyperactivity disorder and urinary metabolites of organophosphate pesticides. Pediatrics 2010, 125, e1270–e1277, doi:10.1542/peds.2009-3058. 20478945
[60]  Eskenazi, B.; Marks, A.R.; Bradman, A.; Harley, K.; Barr, D.B.; Johnson, C.; Morga, N.; Jewell, N.P. Organophosphate pesticide exposure and neurodevelopment in young mexican-american children. Environ. Health Perspect. 2007, 115, 792–798, doi:10.1289/ehp.9828. 17520070
[61]  Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N.; Trujillo, C.; Johnson, C.; Bradman, A.; Boyd Barr, D. Prenatal exposure to organophosphate pesticides and IQ in 7-year old children. Environ. Health Perspect. 2011, 119, 1189–1195, doi:10.1289/ehp.1003185. 21507776
[62]  O’Rourke, M.K.; Lizardi, P.S.; Rogan, S.P.; Freeman, N.C.; Aguirre, A.; Saint, C.G. Pesticide exposure and creatinine variation among young children. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 672–681, doi:10.1038/sj.jea.7500119. 11138659
[63]  Wilson, N.K.; Strauss, W.J.; Iroz-Elardo, N.; Chuang, J.C. Exposures of preschool children to chlorpyrifos, diazinon, pentachlorophenol, and 2,4-dichlorophenoxyacetic acid over 3 years from 2003 to 2005: A longitudinal model. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 546–558, doi:10.1038/jes.2009.45. 19724304

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133