|
材料科学技术学报 2009
Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage
Keywords: Titanium alloy,Lumbar,Interbody fusion cage,Biomechanics Abstract: This work focuses on the influence of elastic modulus on biomechanical properties of lumbar interbody fusion cages by selecting two titanium alloys with different elastic modulus. They were made by a new β type alloy with chemical composition of Ti-24Nb-4Zr-7.6Sn having low Young0s modulus ~50 GPa and by a conventional biomedical alloy Ti-6Al-4V having Young0s modulus 110 GPa. The results showed that the designed cages with low modulus (LMC) and high modulus (HMC) can keep identical compression load ~9.8 kN and endure fatigue cycles higher than 5×106 without functional or mechanical failure under 2.0 kN axial compression. The anti-subsidence ability of both group cages were examined by axial compression of thoracic spine specimens (T9~T10) dissected freshly from the calf with averaged age of 6 months. The results showed that the LMC has better anti-subsidence ability than the HMC (p<0.05). The above results suggest that the cage with low elastic modulus has great potential for clinical applications.
|