全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2011 

Reviewing the Science and Implementation of Climate Change Adaptation Measures in European Forestry

DOI: 10.3390/f2040961

Keywords: forestry, Europe, climate change, adaptation strategies, forest management

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developing adaptation measures in forestry is an urgent task because the forests regenerated today will have to cope with climate conditions that may drastically change during the life of the trees in the stand. This paper presents a comprehensive review of potential adaptation options in forestry in Europe based on three pillars: a review of the scientific literature, an analysis of current national response strategies, and an expert assessment based on a database compiled in the COST Action ECHOES (Expected Climate Change and Options for European Silviculture). The adaptation measures include responses to both risks and opportunities created by climate change and address all stages of forestry operations. Measures targeted to reduce vulnerability to climate change may either aim to reduce forest sensitivity to adverse climate change impacts or increase adaptive capacity to cope with the changing environmental conditions. Adaptation measures mitigating drought and fire risk such as selection of more drought resistant species and genotypes are crucial. For adaptation to be successful it is of the utmost importance to disseminate the knowledge of suitable adaptation measures to all decision makers from the practice to the policy level. The analysis of the ECHOES database demonstrates that this challenge is well recognized in many European countries. Uncertainty about the full extent of climate change impacts and the suitability of adaptation measures creates a need for monitoring and further research. A better understanding of how to increase adaptive capacity is also needed, as well as regional vulnerability assessments which are crucial for targeting planned adaptation measures.

References

[1]  Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457.
[2]  Streck, C.; Scholz, S.M. The role of forests in global climate change: Whence we come and where we go. Int. Aff. 2006, 82, 861–879.
[3]  Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
[4]  Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P. Irriversible climate change due to carbon dioxide emission. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709.
[5]  Commission of the European Communities. Adapting to Climate Change in Europe—Options for EU Action. Green Paper from the Comission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions; Commission of the European Communities: Brussels, Belgium, 2007.
[6]  Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007.
[7]  Sepp?l?, R.; Buck, A.; Katila, P. Adaptation of Forests and People to Climate Change; International Union of Forest Research Organizations (IUFRO): Helsinki, Finland, 2009.
[8]  Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolstr?m, M.; Lexer, M.J.; Marchetti, M. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709.
[9]  Adger, W.N.; Agrawala, S.; Mirza, M.M.Q.; Conde, C.; O'Brien, K.; Pulhin, J.; Pulwarty, R.; Smit, B.; Takahashi, K. Assessment of adaptation practices, options, constraints and capacity. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 717–743.
[10]  Parry, J.-E.; Hammill, A.; Drexhage, J. Climate Change and Adaptation; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2005; p. 28.
[11]  Lenton, T.M.; Held, H.; Kriegler, E.; Hall, J.W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H.J. Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. USA 2008, 105, 1786–1793.
[12]  Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684.
[13]  Bigler, C.; Br?ker, O.U.; Bugmann, H.; Dobbertin, M.; Rigling, A. Drought as an inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 2006, 9, 330–343.
[14]  Seidl, R.; Schelhaas, M.J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852.
[15]  Spittlehouse, D.L.; Stewart, R.B. Adaptation to climate change in forest management. BC J. Ecosyst. Manag. 2003, 4, 1–11.
[16]  Ohlson, D.W.; McKinnon, G.A.; Hirsch, K.G. A structured decision-making approach to climate change adaptation in the forest sector. For. Chron. 2005, 81, 97–103.
[17]  Spittlehouse, D.L. Integrating climate change adaptation into forest management. For. Chron. 2005, 81, 691–695.
[18]  Ogden, A.E.; Innes, J. Incorporating climate change adaptation considerations into forest management planning in the boreal forest. Int. For. Rev. 2007, 9, 713–733.
[19]  Ogden, A.E.; Innes, J.L. Application of structured decision making to an assessment of climate change vulnerabilities and adaptation options for sustainable forest management. Ecol. Soc. 2009, 14, 1–11.
[20]  Fürstenau, C.; Badeck, F.W.; Lasch, P.; Lexer, M.J.; Lindner, M.; Mohr, P.; Suckow, F. Multiple-use forest management in consideration of climate change and the interests of stakeholder groups. Eur. J. For. Res. 2007, 126, 225–239.
[21]  Garcia-Gonzalo, J.; J?ger, D.; Lexer, M.J.; Peltola, H.; Brice?o-Elizondo, E.; Kellom?ki, S. Does climate change affect optimal planning solutions for multi-objective forest management? Allg. Forst Jagdztg 2008, 179, 78–95.
[22]  Seidl, R.; Rammer, W.; J?ger, D.; Lexer, M.J. Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For. Ecol. Manag. 2008, 256, 209–220.
[23]  Spiecker, H. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—Temperate zone. J. Environ. Manag. 2003, 67, 55–65.
[24]  Lindner, M. How to adapt forest management in response to the challenges of climate change? In Climate Change and Forest Genetic Diversity: Implications for Sustainable Forest Management in Europe; Koskela, J., Buck, A., Tessier du Cros, E., Eds.; Bioversity International: Rome, Italy, 2007; pp. 31–42.
[25]  Bolte, A.; Ammer, C.; L?f, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482.
[26]  Seidl, R.; Rammer, W.; Lexer, M.J. Climate change vulnerability of sustainable forest management in the Eastern Alps. Clim. Chang. 2011, 106, 225–254.
[27]  Commission of the European Communities. Communication from the Commission to the Council and the European Parliament on an EU Forest Action Plan. COM (2006) 302; Commission of the European Communities: Brussels, Belgium, 2006; pp. 1–13.
[28]  Rivas-Martínez, S.; Penas, A.; Díaz, T.E. Bioclimatic Map of Europe, Bioclimates; Cartographic Service, University of León: León, Spain, 2004.
[29]  SciVerse Scopus; Elsevier: Amsterdam, The Netherland, June 2008. Available online: www.scopus.com (accessed on 10 October 2011).
[30]  Badeck, F.-W.; Furstenau, C.; Lasch, P.; Suckow, F.; Peltola, H.; Garcia-Gonzalo, J.; Briceno-Elizondo, E.; Kellom?ki, S.; Lexer, M.J.; J?ger, D.; et al. Adaptive Forest Management at the Scale of Management Units; Research Notes; Faculty of Forestry, University of Joensuu: Joensuu, Finland, 2005; pp. 315–382.
[31]  Broadmeadow, M.S.J.; Ray, D.; Samuel, C.J.A. Climate change and the future for broadleaved tree species in Britain. Forestry 2005, 78, 145–161.
[32]  Resco de Dios, V.; Fischer, C.; Colinas, C. Climate change effects on Mediterranean forests and preventive measures. New For. 2007, 33, 29–40.
[33]  Czajkowski, T.; Bolte, A. Unterschiedliche Reaktion deutscher und polnischer Herkünfte der Buche (Fagus sylvatica L.) auf Trockenheit. Allg. Forst Jagdztg 2005, 177, 30–40.
[34]  Ehleringer, J.R.; Monson, R.K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 1993, 24, 411–439.
[35]  Vitasse, Y.; Delzon, S.; Bresson, C.C.; Michalet, R.; Kremer, A. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Can. J. For. Res. 2009, 39, 1259–1269.
[36]  Kremer, A. Evolutionary responses of European oaks to climate change. Ir. For. 2010, 67, 53–65.
[37]  Wang, T.; Hamann, A.; Yanchuk, A.; O'Neill, G.A.; Aitken, S.N. Use of response functions in selecting lodgepole pine populations for future climates. Glob. Chang. Biol. 2006, 12, 2404–2416.
[38]  O'Neill, G.A.; Hamann, A.; Wang, T. Accounting for population variation improves estimates of the impact of climate change on species' growth and distribution. J. Appl. Ecol. 2008, 45, 1040–1049.
[39]  Reich, P.B.; Oleksyn, J. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 2008, 11, 588–597.
[40]  Teissier du Cros, E. Un ensemble cohérent de références pour la gestion et la conservation des ressources génétiques forestières en France. Rev. For. Fr. 2000, 52, 391–400.
[41]  Fenning, T.M.; Walter, C.; Gartland, K.M.A. Forest Biotech and climate change. Nat. Biotechnol. 2008, 26, 615–617.
[42]  Nelson, C.D.; Johnsen, K.H. Genomic and physiological approaches for advancing forest tree improvement. Tree Physiol. 2008, 28, 1135–1143.
[43]  Scotti-Saintagne, C.; Bodénès, C.; Barreneche, T.; Bertocchi, E.; Plomion, C.; Kremer, A. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 2004, 109, 1648–1659.
[44]  Casasoli, M.; Derory, J.; Morera-Dutrey, C.; Brendel, O.; Porth, I.; Guehl, J.M.; Villani, F.; Kremer, A. Comparison of QTLs for adaptive traits between oak and chestnut based on an EST consensus map. Genetics 2006, 172, 533–546.
[45]  Yakovlev, I.A.; Fossdal, C.; Johnsen, ?.; Junttila, O.; Skr?ppa, T. Analysis of gene expression during bud burst initiation in Norway spruce via ESTs from subtracted cDNA libraries. Tree Genet. Genomes 2006, 2, 39–52.
[46]  Yakovlev, I.A.; Asante, D.K.A.; Fossdal, C.G.; Partanen, J.; Junttila, O.; Johnsen, O. Dehydrins expression related to timing of bud burst in Norway spruce. Planta 2008, 228, 459–472.
[47]  Frewen, B.E.; Chen, T.H.H.; Howe, G.T.; Davis, J.; Rohde, A.; Boerjan, W.; Bradshaw, H.D. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics 2000, 154, 837–845.
[48]  Hurme, P.; Repo, T.; Savolainen, O.; P??kk?nen, T. Genetic basis of climatic adaptation in Scots pine by Bayesian quantitative trait locus analysis. Genetics 2000, 155, 1309–1326.
[49]  Lauteri, M.; Scartazza, A.; Guido, M.C.; Brugnoli, E. Genetic variation in photo synthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 1997, 11, 675–683.
[50]  Brendel, O.; le ThieC, D.; Saintagne, C.; Bodénès, C.; Kremer, A.; Guehl, J.M. Detection of quantitative trait loci controlling water use efficiency and related traits in Quercus robur L. Tree Genet. Genomes 2008, 4, 263–278.
[51]  Lamy, J.-B.; Bouffier, L.; Burlett, R.; Plomion, C.; Cochard, H.; Delzon, S. Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PloS One 2011, 6, e23476:1–e23476:12.
[52]  Kowalski, T.; Holdenrieder, O. Pathogenicity of Chalara fraxinea. For. Pathol. 2009, 39, 1–7.
[53]  Czajkowski, T.; Kühling, M.; Bolte, A. Impact of the 2003 summer drought on growth of beech sapling natural regeneration (Fagus sylvatica L.) in north-eastern Central Europe. Allg. Forst Jagdztg 2005, 176, 133–143.
[54]  Lloret, F.; Pe?uelas, J.; Ogaya, R. Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. J. Veg. Sci. 2004, 15, 237–244.
[55]  Luis, V.C.; Puértolas, J.; Climent, J.; Peters, J.; González-Rodríguez, M.A.; Morales, D.; Jiménez, M.S. Nursery fertilization enhances survival and physiological status in Canary Island pine (Pinus canariensis) seedlings planted in a semiarid environment. Eur. J. For. Res. 2009, 128, 221–229.
[56]  Del Campo, A.D.; Navarro, R.M.; Hermoso, J.; Ibá?ez, J. Relationships between site and stock quality in Pinus halepensis Mill. reforestation of semiarid landscapes in Eastern Spain. Ann. For. Sci. 2007, 64, 719–731.
[57]  Bravo, F.; Bravo-Oviedo, A.; Ruiz, R.; Montero, G. Selvicultura y Cambio Climático. In Compendio de Selvicultura APlicada en Espana; Serrada, R., Montero, G., Reque, J., Eds.; FUCOVASA: Madrid, Spain, 2008; p. 1178.
[58]  Seidl, R.; Rammer, W.; Lexer, M.J. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Can. J. For. Res. 2011, 41, 694–706.
[59]  Garcia-Gonzalo, J.; Peltola, H.; Brice?o-Elizondo, E.; Kellom?ki, S. Changed thinning regimes may increase carbon stock under climate change: A case study from a Finnish boreal forest. Clim. Chang. 2007, 81, 431–454.
[60]  Brice?o-Elizondo, E.; Garcia-Gonzalo, J.; Peltola, H.; Matala, J.; Kellom?ki, S. Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manag. 2006, 232, 152–167.
[61]  Sabaté, S.; Gracia, C.A.; Sánchez, A. Likely effects of climate change on growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica forests in the Mediterranean region. For. Ecol. Manag. 2002, 162, 23–37.
[62]  K?hler, M.; Sohn, J.; N?gele, G.; Bauhus, J. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning? Eur. J. For. Res. 2010, 129, 1109–1118.
[63]  Wilson, J.S.; Oliver, C.D. Stability and density management in Douglas-fir plantations. Can. J. For. Res. 2000, 30, 910–920.
[64]  Slodicak, M.; Novak, J. Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For. Ecol. Manag. 2006, 224, 252–257.
[65]  Schelhaas, M.J. The wind stability of different silvicultural systems for Douglas-fir in the Netherlands: A model-based approach. Forestry 2008, 81, 399–414.
[66]  Gardiner, B.A.; Stagey, G.R.; Belcher, R.E.; Wood, C.J. Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Forestry 1997, 70, 233–252.
[67]  Jactel, H.; Nicoll, B.C.; Branco, M.; Gonzalez-Olabarria, J.R.; Grodzki, W.; L?ngstr?m, B.; Moreira, F.; Netherer, S.; Orazio, C.; Piou, D.; Santos, H.; Schelhaas, M.J.; Tojic, K.; Vodde, F. The influences of forest stand management on biotic and abiotic risks of damage. Ann. For. Sci. 2009, 66, 1–18.
[68]  Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, ?. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. For. Ecol. Manag. 2010, 260, 939–947.
[69]  Niinemets, ü.; Valladares, F. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecol. Monogr. 2006, 76, 521–547.
[70]  Ciancio, O.; Iovino, F.; Menguzzato, G.; Nicolaci, A.; Nocentini, S. Structure and growth of a small group selection forest of calabrian pine in Southern Italy: A hypothesis for continuous cover forestry based on traditional silviculture. For. Ecol. Manag. 2006, 224, 229–234.
[71]  Pommerening, A.; Murphy, S.T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 2004, 77, 27–44.
[72]  Gardiner, B.A.; Quine, C.P. Management of forests to reduce the risk of abiotic damage—A review with particular reference to the effects of strong winds. For. Ecol. Manag. 2000, 135, 261–277.
[73]  Peltola, H.; Kellom?ki, S.; V?is?nen, H.; Ikonen, V.P. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. Can. J. For. Res. 1999, 29, 647–661.
[74]  Kellom?ki, S.; Maaj?rvi, M.; Strandman, H.; Kilpel?inen, A.; Peltola, H. Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fenn. 2010, 44, 213–233.
[75]  Cyprus Forestry Department. Short Term Action Plan Against Drought Impacts in State Forests; Forestry Department: Lefkosia, Cyprus, 2009.
[76]  B?ttcher, H.; Lindner, M. Managing forest plantations for carbon sequestration today and in the future. In Ecosystem Goods and Services from Plantation Forests; Bauhus, J., van der Meer, P., Kanninen, M., Eds.; Earthscan: London, UK, 2010.
[77]  Lindner, M. Developing adaptive forest management strategies to cope with climate change. Tree Physiol. 2000, 20, 299–307.
[78]  Bodin, P.; Wiman, B.L.B. The usefulness of stability concepts in forest management when coping with increasing climate uncertainties. For. Ecol. Manag. 2007, 242, 541–552.
[79]  Ciancio, O.; Nocentini, S. Biodiversity conservation and systemic silviculture: Concepts and applications. Plant Biosyst. 2011, 145, 411–418.
[80]  Corona, P.; Scotti, R. Systemic silviculture, adaptive management and forest monitoring perspectives. Ital. J. For. Mt. Environ. 2011, 66, 219–224.
[81]  Barbati, A.; Corona, P.; Iovino, F.; Marchetti, M.; Menguzzato, G.; Portoghesi, L. The application of the ecosystem approach through sustainable forest management: An Italian case study. Ital. J. For. Mt. Environ. 2010, 65, 1–17.
[82]  Wolfslehner, B.; Seidl, R. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management. Environ. Manag. 2010, 46, 850–861.
[83]  Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151.
[84]  Ascough, J.C.; Maier, H.R.; Ravalico, J.K.; Strudley, M.W. Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol. Model. 2008, 219, 383–399.
[85]  Rouault, G.; Candau, J.N.; Lieutier, F.; Nageleisen, L.M.; Martin, J.C.; Warzée, N. Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann. For. Sci. 2006, 63, 613–624.
[86]  Desprez-Loustau, M.; Robin, C.; Reynaud, G.; Déqué, M.; Badeau, V.; Piou, D.; Husson, C.; Marcais, B. Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Can. J. Plant Pathol. 2007, 29, 101–120.
[87]  Kozlov, M.V. Losses of birch foliage due to insect herbivory along geographical gradients in Europe: A climate-driven pattern? Clim. Chang. 2008, 87, 107–117.
[88]  Seidl, R.; Schelhaas, M.J.; Lexer, M.J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852.
[89]  Moore, B.A.; Allard, G.B. Climate change impacts on forest health. In Forest Health & Biosecurity. Working Paper FBS/34E; FAO: Rome, Italy, 2008; p. 38.
[90]  Netherer, S.; Schopf, A. Potential effects of climate change on insect herbivores in European forests—General aspects and the pine processionary moth as specific example. For. Ecol. Manag. 2010, 259, 831–838.
[91]  Netherer, S.; Nopp-Mayr, U. Predisposition assessment systems (PAS) as supportive tools in forest management—Rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For. Ecol. Manag. 2005, 207, 99–107.
[92]  Baier, P.; Pennerstorfer, J.; Schopf, A. Phenips—A comprehensive phenology model of Ips typographus (L.) (Col. Scolytidae) as a tool for hazard rating of bark beetle infestation. For. Ecol. Manag. 2007, 249, 171–186.
[93]  Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.-T.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007.
[94]  Moreno, J.M. Impacts on Natural Hazards of Climatic Origin, C. Forest fires risk. ECCE project final report; ECCE: Madrid, Spain, 2005; pp. 559–592.
[95]  Camia, A.; Barbosa, P.; Amatulli, G.; San Miguel Ayanz, J. Fire danger forecast in the European Forest Fire Information System (EFFIS). Proceedings of the Wildfire2007 IV International Wildland Fire Conference, Seville, Spain, 13–17 May 2007.
[96]  Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manage. 2004, 202, 67–82.
[97]  Hanewinkel, M.; Hummel, S.; Cullmann, D.A. Modelling and economic evaluation of forest biome shifts under climate change in Southwest Germany. For. Ecol. Manag. 2010, 259, 710–719.
[98]  Zebisch, M.; Grothmann, T.; Schr?ter, D.; Hasse, C.; Fritsch, U.; Cramer, W. Klimawandel in Deutschland, Vulnerabilit?t und Anpassungsstrategien klimasensitiver Systeme. Report of Potsdam-Institut für Klimafolgenforschung. Climate Change 2005, 8, 203.
[99]  Arca, B.; Duce, P.; Laconi, M.; Pellizzaro, G.; Salis, M.; Spano, D. Evaluation of FARSITE simulator in Mediterranean maquis. Int. J. Wildland Fire 2007, 16, 563–572.
[100]  Fuhrer, J.; Beniston, M.; Fischlin, A.; Frei, C.; Goyette, S.; Jasper, K.; Pfister, C. Climate risks and their impact on agriculture and forests in Switzerland. Clim. Chang. 2006, 79, 79–102.
[101]  Brown, A.; Webber, J. Red Band Needle Blight of Conifers in Britain; Forestry Commission: Edinburgh, UK, 2008.
[102]  Brang, P.; Sch?nenberger, W.; Frehner, M.; Schwitter, R.; Thormann, J.; Wasser, B. Management of protection forests in the European Alps: An overview. For. Snow Landsc. Res. 2006, 80, 23–44.
[103]  Woltjer, M.; Rammer, W.; Brauner, M.; Seidl, R.; Mohren, G.M.J.; Lexer, M.J. Coupling a 3D patch model and a rockfall module to assess rockfall protection in mountain forests. J. Environ. Manag. 2008, 87, 373–388.
[104]  Odenthal-Kahabka, J. Storm Handbook. Coping with Storm Damaged Timber; Forest Research Institute of Baden-Württemberg: Freiburg, Germany, 2005. Available online: http://www.waldwissen.net/waldwirtschaft/schaden/sturm_schnee_eis/fva_sturmhandbuch/index_EN?redir=1 (accessed on 10 October 2011).
[105]  Keskitalo, E.C.H. Vulnerability and adaptive capacity in forestry in northern Europe: A Swedish case study. Clim. Chang. 2008, 87, 219–234.
[106]  Cuculeanu, V.; Tuinea, P.; Balteanu, D. Climate change impacts in Romania: Vulnerability and adaptation options. GeoJournal 2002, 57, 203–209.
[107]  Corona, P. Integration of forest mapping and inventory to support forest management. IForest 2010, 3, 59–64.
[108]  Honnay, O.; Verheyen, K.; Butaye, J.; Jacquemyn, H.; Bossuyt, B.; Hermy, M. Possible effects of habitat fragmentation and climate change on the range of forest plant species. Ecol. Lett. 2002, 5, 525–530.
[109]  Blennow, K.; Persson, J. Climate change: Motivation for taking measure to adapt. Glob. Environ. Chang. 2009, 19, 100–104.
[110]  Ellison, D. Addressing adaptation in the EU policy framework. In Developing Adaptation Policy and Practice in Europe: Multi-level Governance of Climate Change; Keskitalo, E.C., Ed.; Springer: Berlin, Germany, 2010; pp. 39–96.
[111]  Klimo, E.; Kulhavy, J. Norway spruce monocultures and their transformation to close-to-nature forests from the point of view of soil changes in the Czech Republic. Ekol. Bratislava 2006, 25, 27–43.
[112]  Meyer, P. Network of strict forest reserves as reference system for close to nature forestry in Lower Saxony, Germany. For. Snow Landsc. Res. 2005, 79, 33–44.
[113]  Seidl, R.; Rammer, W.; J?ger, D.; Currie, W.S.; Lexer, M.J. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For. Ecol. Manag. 2007, 248, 64–79.
[114]  Baskent, E.Z.; Kele?, S. Developing alternative forest management planning strategies incorporating timber, water and carbon values: An examination of their interactions. Environ. Model. Assess. 2009, 14, 467–480.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133