New diseases in forest ecosystems have been reported at an increasing rate over the last century. Some reasons for this include the increased disturbance by humans to forest ecosystems, changed climatic conditions and intensified international trade. Although many of the contributing factors to the changed disease scenarios are anthropogenic, there has been a reluctance to control them by legislation, other forms of government authority or through public involvement. Some of the primary obstacles relate to problems in communicating biological understanding of concepts to the political sphere of society. Relevant response to new disease scenarios is very often associated with a proper understanding of intraspecific variation in the challenging pathogen. Other factors could be technical, based on a lack of understanding of possible countermeasures. There are also philosophical reasons, such as the view that forests are part of the natural ecosystems and should not be managed for natural disturbances such as disease outbreaks. Finally, some of the reasons are economic or political, such as a belief in free trade or reluctance to acknowledge supranational intervention control. Our possibilities to act in response to new disease threats are critically dependent on the timing of efforts. A common recognition of the nature of the problem and adapting vocabulary that describe relevant biological entities would help to facilitate timely and adequate responses in society to emerging diseases in forests.
References
[1]
Orwig, D.A. Ecosystem to regional impacts of introduced pests and pathogens: historical context, questions and issues. J. Biogeogr. 2002, 29, 1471–1474.
[2]
Chou, C.K.S. Perspectives of disease threat in large-scale Pinus radiata monoculture—the New Zealand experience. Eur. J. For. Pathol. 1991, 21, 71–81.
[3]
Levine, J.M.; D'Antonio, C.M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 2003, 17, 322–326.
[4]
Brasier, C.M.; Kirk, S.A. Rapid emergence of hybrids between the two subspecies of Ophiostoma novo-ulmi with a high level of pathogenic fitness. Plant Pathol. 2010, 59, 186–199.
[5]
Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808.
[6]
Dehnen-Schmutz, K.; Holdenrieder, O.; Jeger, M.J.; Pautasso, M. Structural change in the international horticultural industry: Some implications for plant health. Sci. Hortic. 2010, 125, 1–15.
[7]
Koch, F.H.; Smith, W.D. Mapping sudden oak death risk nationally using host, climate, and pathways data. Proceedings of the Sudden Oak Death Third Science Symposium, Santa Rosa, CA, USA, 5–9 March 2007; pp. 279–287.
[8]
Woods, A.; Coates, K.D.; Hamann, A. Is an unprecedented dothistroma needle blight epidemic related to climate change? BioScience 2005, 55, 761–769.
[9]
Thomsen, I.M. Precipitation and temperature as factors in Gremmeniella abietina epidemics. For. Pathol. 2009, 39, 56–72.
[10]
Dukes, J.S.; Pontius, J.; Orwig, D.; Garnas, J.R.; Rodgers, V.L.; Brazee, N.; Cooke, B.; Theoharides, K.A.; Stange, E.E.; Harrington, R.; Ehrenfeld, J.; Gurevitch, J.; Lerdau, M.; Stinson, K.; Wick, R.; Ayres, M. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict? Can. J. For. Res. 2009, 39, 231–248.
[11]
Grulke, N.E. The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol. 2010, 189, 9–11.
[12]
Pautasso, M.; Dehnen-Schmutz, K.; Holdenrieder, O.; Pietravalle, S.; Salama, N.; Jeger, M.J.; Lange, E.; Hehl-Lange, S. Plant health and global change—some implications for landscape management. Biol. Rev. 2010, 85, 729–755.
[13]
Woodward, S.; Stenlid, J.; Karjalainen, R.; Hüttermann, A. Heterobasidion annosum: biology, ecology, impact and control; CAB International: Wallingford, UK, 1998.
[14]
Pimentel, D.; Lach, L.; Zuniga, R.; Morrison, D. Environmental and economic costs of nonindigenous species in the United States. BioScience 2000, 50, 53–65.
[15]
Perrings, C.; Williamson, M.; Barbier, E.B.; Delfino, D.; Dalmazzone, S. Biological invasion risks and the public good: an economic perspective. Conserv. Ecol. 2002, 6, p. 1. Available online: http://www.consecol.org/vol6/iss1/art1 (accessed on 30 November 2010).
[16]
Pihlgren, A.; Hallingback, T.; Aronsson, M.; Dahlberg, A.; Edqvist, M.; Johansson, G.; Krikorev, M.; Thor, G. The new Swedish Red List 2010. Svensk Botanisk Tidskrift 2010, 104, 210–226.
[17]
Thor, G.; Johansson, P.; Jonsson, M.T. Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodivers. Conserv. 2010, 19, 2307–2328.
[18]
Lovett, G.; Arthur, M.; Weathers, K.; Griffin, J. Long-term changes in forest carbon and nitrogen cycling caused by an introduced pest/pathogen complex. Ecosystems 2010, 13, 1188–1200.
[19]
Ruess, R.W.; McFarland, J.M.; Trummer, L.M.; Rohrs-Richey, J.K. Disease-mediated declines in N-fixation inputs by Alnus tenuifolia to early-successional floodplains in interior and South-Central Alaska. Ecosystems 2009, 12, 489–502.
Kurz, W.A.; Stinson, G.; Rampley, G.J.; Dymond, C.C.; Neilson, E.T. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. 2008, 105, 1551–1555.
[22]
Enserink, M. Biological invaders sweep in. Science 1999, 285, 1834–1836.
[23]
Williamson, M. Explaining and predicting the success of invading species at different stages of invasion. Biol. Invasions 2006, 8, 1561–1568.
[24]
Woolhouse, M.E.J.; Haydon, D.T.; Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 2005, 20, 238–244.
[25]
Prinzing, A.; Durka, W.; Klotz, S.; Brandl, R. Which species become aliens? Evol. Ecol. Res. 2002, 4, 385–405.
Houston, D.R. Major new tree disease epidemics: beech bark disease. Annu. Rev. Phytopathol. 1994, 32, 75–87.
[35]
Levine, J.M.; D'Antonio, C.M. Elton revisited: a review of evidence linking diversity and invasibility. Oikos 1999, 87, 15–26.
[36]
Mitchell, C.E.; Power, A.G. Release of invasive plants from fungal and viral pathogens. Nature 2003, 421, 625–627.
[37]
Desprez-Loustau, M.-L.; Robin, C.; Buée, M.; Courtecuisse, R.; Garbaye, J.; Suffert, F.; Sache, I.; Rizzo, D.M. The fungal dimension of biological invasions. Trends Ecol. Evol. 2007, 22, 472–480.
[38]
Gilbert, G.S. Evolutionary ecology of plant diseases in natural ecosystems. Annu. Rev. Phytopathol. 2002, 40, 13–43.
[39]
Hunt, R.S.; Sickle, G.A.V. Variation in susceptibility to sweet fern rust among Pinus contorta and P. banksiana. Can. J. For. Res. 1984, 14, 672–675.
[40]
Cobb, R.C.; Meentemeyer, R.K.; Rizzo, D.M. Apparent competition in canopy trees determined by pathogen transmission rather than susceptibility. Ecology 2010, 91, 327–333.
[41]
Koricheva, J.; Vehvilainen, H.; Riihimaki, J.; Ruohomaki, K.; Kaitaniemi, P.; Ranta, H. Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Can. J. For. Res. 2006, 36, 324–336.
Jones, D.R.; Baker, R.H.A. Introductions of non-native plant pathogens into Great Britain, 1970–2004. Plant Pathol. 2007, 56, 891–910.
[44]
Wikler, K.; Gordon, T. An initial assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Can. J. Bot. 2000, 78, 709–717.
[45]
Olson, ?.; Stenlid, J. Pathogenic fungal species hybrids infecting plants. Microbes Infect. 2002, 4, 1353–1359.
[46]
Jung, T.; Blaschke, M. Phytophthora root and collar rot of alders in Bavaria: distribution, modes of spread and possible management strategies. Plant Pathol. 2004, 53, 197–208.
[47]
Dehnen-Schmutz, K.; Holdenrieder, O.; Jeger, M.J.; Pautasso, M. Structural change in the international horticultural industry: Some implications for plant health. Sci. Hortic. , 125, 1–15.
[48]
Wingfield, M.J.; Slippers, B.; Hurley, B.P.; Coutinho, T.A.; Wingfield, B.D.; Roux, J. Eucalypt pests and diseases: Growing threats to plantation productivity. South. For. 2008, 70, 139–144.
[49]
Wingfield, M.J.; Hammerbacher, A.; Ganley, R.J.; Steenkamp, E.T.; Gordon, T.R.; Wingfield, B.D.; Coutinho, T.A. Pitch canker caused by Fusarium circinatum—a growing threat to pine plantations and forests worldwide. Australas. Plant Pathol. 2008, 37, 319–334.
[50]
Landeras, E.; García, P.; Fernández, Y.; Bra?a, M.; Fernández-Alonso, O.; Méndez-Lodos, S.; Pérez-Sierra, A.; León, M.; Abad-Campos, P.; Berbegal, M.; Beltrán, R.; García-Jiménez, J.; Armengol, J. Outbreak of pitch canker caused by Fusarium circinatum on Pinus spp. in Northern Spain. Plant Dis. 2005, 89, 1015–1015.
[51]
Pérez, C.A.; Wingfield, M.J.; Slippers, B.; Altier, N.A.; Blanchette, R.A. Neofusicoccum eucalyptorum, a Eucalyptus pathogen, on native Myrtaceae in Uruguay. Plant Pathol. 2009, 58, 964–970.
[52]
Glen, M.; Alfenas, A.C.; Zauza, E.A.V.; Wingfield, M.J.; Mohammed, C. Puccinia psidii: a threat to the Australian environment and economy: a review. Australas. Plant Pathol. 2007, 36, 1–16.
[53]
Karlman, M. Risks associated with the introduction of Pinus contorta in northern Sweden with respect to pathogens. For. Ecol. Manage. 2001, 141, 97–105.
[54]
Gonthier, P.; Warner, R.; Nicolotti, G.; Mazzaglia, A.; Garbelotto, M.M. Pathogen introduction as a collateral effect of military activity. Mycol. Res. 2004, 108, 468–470.
[55]
Panconesi, A. Canker stain of plane trees: A serious danger to urban plantings in Europe. J. Plant Pathol. 1999, 81, 3–15.
[56]
FAO. International Standards for Phytosanitary Measures ISPM No. 15 Guidelines for regulating wood packaging material in international trade (2002) with modifications to Annex I (2006); FAO: Rome, Italy, 2006; p. 11.
[57]
MacLeod, A.; Pautasso, M.; Jeger, M.; Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2010, 2, 49–70.
[58]
Taylor, J.W.; Jacobson, D.J.; Kroken, S.; Kasuga, T.; Geiser, D.M.; Hibbett, D.S.; Fisher, M.C. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 2000, 31, 21–32.
[59]
Pringle, A.; Baker, D.M.; Platt, J.L.; Wares, J.P.; Latge, J.P.; Taylor, J.W. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 2005, 59, 1886–1899.
[60]
O'Donnell, K.; Ward, T.J.; Geiser, D.M.; Corby Kistler, H.; Aoki, T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 2004, 41, 600–623.
[61]
Buchanan, P.K. A new species of Heterobasidion (Polyporaceae) from Australasia. Mycotaxon 1988, 32, 325–337.
[62]
McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379.
[63]
Ioos, R.; Andrieux, A.; Marcais, B.; Frey, P. Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genet. Biol. 2006, 43, 511–529.
[64]
Brasier, C.M.; Kirk, S.A.; Delcan, J.; Cooke, D.E.L.; Jung, T.; Man In't Veld, W.A. Phytophthora alni sp nov and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycol. Res. 2004, 108, 1172–1184.
Ridley, G.S.; Dick, M.A. Pine pitch canker disease: the name of the causal fungus and its distribution. Australas. Plant Pathol. 2000, 29, 263–266.
[67]
Rizzo, D.M.; Garbelotto, M.; Davidson, J.M.; Slaughter, G.W.; Koike, S.T. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Dis. 2002, 86, 205–214.
[68]
?stbrant, I.-L. Almsjuka p? Gotland: Vi beh?ver din hj?lp f?r att r?dda de gotl?ndska almarna! Available online: http://www.lansstyrelsen.se/gotland (accessed on 16 March 2011).
[69]
Cahill, D.; Rookes, J.; Wilson, B.; Gibson, L.; McDougall, K. Turner review No. 17. Phytophthora cinnamomi and Australia's biodiversity: impacts, predictions and progress towards control. Aust. J. Bot. 2008, 56, 279–310.
[70]
Gren, I.-M.; Isacs, L.; Carlsson, M. Costs of Alien Invasive Species in Sweden. AMBIO. 2009, 38, 135–140.
[71]
Ramsfield, T.D.; Ball, R.D.; Gardner, J.F.; Dick, M.A. Temperature and time combinations required to cause mortality of a range of fungi colonizing wood. Can. J. Plant Pathol. 2010, 32, 368–375.
[72]
Anon Council directive of 8 May 2000 on protective measures against the introduction into the Community of organisms harmful to plants or plant products and against their spread within the Community (2000/29/EC). Official J. Eur. Communities 2000, L 169, 1–112.
[73]
Dwinell, L.; Adams, D.; Guerra-Santos, J.; Aquirre, J. Pitch canker disease of Pinus radiata, Proc. 7th International Congress of Plant Pathology. Paper 3.7.30 in Offered Papers Abstracts— Volume 3 Edinburgh, Scotland, 6–16 August 1998.
[74]
Carlucci, A.; Colatruglio, L.; Frisullo, S. First report of pitch canker caused by Fusarium circinatum on Pinus halepensis and P. pinea in Apulia (Southern Italy). Plant Dis. 2007, 91, 1683–1683.
[75]
Anon Commission decision of 18 June 2007 on provisional emergency measures to prevent the introduction into and the spread within the Community of Gibberella circinata Nirenberg & O'Donnell (2007/433/EC). Official J. Eur. Union 2007, L161/66.
[76]
Kowalski, T. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 2006, 36, 264–270.
[77]
Kowalski, T.; Holdenrieder, O. The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For. Pathol. 2009, 39, 304–308.
Britton, K.O.; White, P.; Kramer, A.; Hudler, G. A new approach to stopping the spread of invasive insects and pathogens: early detection and rapid response via a global network of sentinel plantings. NZ J For. Sci. 2010, 40, 109–114.
[80]
O'Brien, H.E.; Parrent, J.L.; Jackson, J.A.; Moncalvo, J.-M.; Vilgalys, R. Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples. Appl. Environ. Microbiol. 2005, 71, 5544–5550.
[81]
Okland, B.; Skarpaas, O.; Schroeder, M.; Magnusson, C.; Lindelow, A.; Thunes, K. Is eradication of the pinewood nematode (Bursaphelenchus xylophilus) likely? An evaluation of current contingency plans. Risk Anal. 2010, 30, 1424–1439.
[82]
Mota, M.M.; Braasch, H.; Bravo, M.A.; Penas, A.C.; Burgermeister, W.; Metge, K.; Sousa, E. First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734.
[83]
Rodrigues, J.M. National eradication programme for the pinewood nematode. In Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems; Mota, M.M., Vieira, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 5–14.
[84]
EPPO. First record of Bursaphelenchus xylophilus in Galicia (Spain). EPPO Reporting Service 2010, 11, 1–3.
[85]
Rizzo, D.M.; Garbelotto, M.; Hansen, E.M. Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu. Rev. Phytopathol. 2005, 43, 309–335.
[86]
National Board of Forestry. Stormen 2005—en skoglig analys (In Swedish); National Board of Forestry, Meddelande 1: Stockholm, Sweden, 2006; p. 199.
[87]
Tomback, D.F.; Achuff, P. Blister rust and western forest biodiversity: ecology, values and outlook for white pines. For. Pathol. 2010, 40, 186–225.
[88]
Ostry, M.E.; Laflamme, G. Fungi and diseases—natural components of healthy forests. Botany 2009, 87, 22–25.
[89]
Josefsson, T. Pristine forest landscapes as ecological references, human land use and ecosystem change in boreal Fennoscandia. Doctoral Disseration, Swedish University of Agricultural Sciences, Ume?, Sweden, 2009.
[90]
Nilsson, P.; Cory, N. Skogsdata 2010 : Aktuella uppgifter om de svenska skogarna fr?n Riksskogstaxeringen -Tema: Contortatall i Sverige (In Swedish); SLU, Institutionen f ?r Skoglig Resurshush?llning: Ume?, Sweden, 2010; p. 300.
[91]
Anagnostakis, S.L. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 1987, 79, 23–37.
[92]
Turner, J.A.; Buongiorno, J.; Zhu, S.; Prestemon, J.P.; Li, R.; Bulman, L.S. Modelling the impact of the exotic forest pest Nectria on the New Zealand forest sector and its major trading partners. NZJ For. Sci. 2007, 37, 383–411.
[93]
Slaney, G.L.; Lantz, V.A.; MacLean, D.A. The economics of carbon sequestration through pest management: application to forested landbases in New Brunswick and Saskatchewan, Canada. For. Policy. Econ. 2009, 11, 525–534.