全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Forests  2011 

Insect Pests in Future Forests: More Severe Problems?

DOI: 10.3390/f2020474

Keywords: forest insect pests, climate change, forest management, insect outbreak, time series, life history traits, population dynamics, trophic interactions, models

Full-Text   Cite this paper   Add to My Lib

Abstract:

A common concern is that damage by insects will increase in forests as a consequence of climate change. We are assessing the likelihood of this predicted outcome by examining how other factors (especially changes in forest management practices) may interact with effects of climate change. Here we describe the strategies for improving understanding of the causes of insect outbreaks and predicting the likelihood of insect-mediated damage increasing in the future. The adopted approaches are: ( i) analyses of historical data, ( ii) comparison of life history traits of outbreak and non-outbreak species, ( iii) experiments along climatic gradients to quantify the strength of trophic interactions, and ( iv) modeling. We conclude that collaboration by researchers from many disciplines is required to evaluate available data regarding the complex interactions involved, to identify knowledge gaps, and facilitate attempts to progress beyond speculation to more robust predictions concerning future levels of insect damage to forests.

References

[1]  Bale, J.S.; Hayward, S.A.L. Insect overwintering in a changing climate. J. Exp. Biol. 2010, 213, 980–994.
[2]  Fleming, R.A.; Candau, J.N. Influences of climatic change on some ecological processes of an insect outbreak system in Canada's boreal forests and the implications for biodiversity. Environ. Monit. Assess. 1998, 49, 235–249.
[3]  Logan, J.A.; Régnière, J.; Powell, J.A. Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 2003, 1, 130–137.
[4]  Shaver, G.R.; Canadell, J.; Chapin, F.S.; Gurevitch, J.; Harte, J.; Henry, G.; Ineson, P.; Jonasson, S.; Melillo, J.; Pitelka, L.; Rustad, L. Global warming and terrestrial ecosystems: A conceptual framework for analysis. BioScience 2000, 50, 871–882.
[5]  Tenow, O.; Nilssen, A.C.; Holmgren, B.; Elverum, F. An insect (Argyresthia retinella, Lep., Yponomeutidae) outbreak in northern birch forests, released by climatic changes? J. Appl. Ecol. 1999, 36, 111–122.
[6]  Williams, D.W.; Liebhold, A.M. Forest defoliators and climatic change—potential changes in spatial distribution of outbreak of western spruce budworm (Lepidoptera, Tortricidae) and gypsy moth (Lepidoptera, Lymantriidae). Environ. Entomol. 1995, 24, 1–9.
[7]  Raffa, K.F.; Aukema, B.H.; Bentz, B.J.; Carroll, A.L.; Hicke, J.A.; Turner, M.G.; Romme, W.H. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: The dynamics of bark beetle eruptions. BioScience 2008, 58, 501–517.
[8]  van Bael, S.A.; Aiello, A.; Valderrama, A.; Medianero, E.; Samaniego, M.; Wright, S.J. General herbivore outbreak following an El Nino-related drought in a lowland Panamanian forest. J. Trop. Ecol. 2004, 20, 625–633.
[9]  Büntgen, U.; Frank, D.; Liebhold, A.; Johnson, D.; Carrer, M.; Urbinati, C.; Grabner, M.; Nicolussi, K.; Levanic, T.; Esper, J. Three centuries of insect outbreaks across the European Alps. New Phytol. 2009, 182, 929–941.
[10]  Ozaki, K.; Fukuyama, K.; Isono, M.; Takao, G. Simultaneous outbreaks of three species of larch web-spinning sawflies: Influences of weather and stand structure. For. Ecol. Manage. 2004, 187, 75–84.
[11]  Bylund, H.; Hofgaard, A.; Ball, J.P.; Danell, K.; Callaghan, T.V. Climate and the population dynamics of two insect outbreak species in the north. Ecol. Bull. 1999, 47, 54–62.
[12]  Kress, A.; Saurer, M.; Büntgen, U.; Treydte, K.S.; Bugmann, H.; Siegwolf, R.T.W. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies. Oecologia 2009, 160, 353–365.
[13]  Gray, D. The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada. Climatic Change 2008, 87, 361–383.
[14]  Cooke, B.J.; Roland, J. The effect of winter temperature on forest tent caterpillar (Lepidoptera; Lasiocampidae) egg survival and population dynamics in northern climates. Environ. Entomol. 2003, 32, 299–311.
[15]  Grimalskii, V.I. Influence of doughts on massive reproduction of needle-eating pests of pine. Soviet J. Ecol. 1977, 8, 94–96.
[16]  Baltensweiler, W.; Weber, U.M.; Cherubini, P. Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 2008, 117, 161–172.
[17]  Tran, J.K.; Ylioja, T.; Billings, R.F.; Régnière, J.; Ayres, M.P. Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis. Ecol. Appl. 2007, 17, 882–899.
[18]  Esper, J.; Büntgen, U.; Frank, D.C.; Nievergelt, D.; Liebhold, A. 1200 years of regular outbreaks in alpine insects. P. Roy. Soc. B.-Biol. Sci. 2007, 274, 671–679.
[19]  Jepsen, J.U.; Hagen, S.B.; Ims, R.A.; Yoccoz, N.G. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: Evidence of a recent outbreak range expansion. J. Anim. Ecol. 2008, 77, 257–264.
[20]  Liebhold, A.; Kamata, N. Introduction—Are population cycles and spatial synchrony a universal characteristic of forest insect populations? Popul. Ecol. 2000, 42, 205–209.
[21]  Klemola, T.; Huitu, O.; Ruohom?ki, K. Geographically partitioned spatial synchrony among cyclic moth populations. Oikos 2006, 114, 349–359.
[22]  Peltonen, M.; Liebhold, A.M.; Bj?rnstad, O.N.; Williams, D.W. Spatial synchrony in forest insect outbreaks: Roles of regional stochasticity and dispersal. Ecology 2002, 83, 3120–3129.
[23]  Williams, D.W.; Liebhold, A.M. Spatial synchrony of spruce budworm outbreaks in eastern North America. Ecology 2000, 81, 2753–2766.
[24]  Klapwijk, M.J.; Battisti, A.; Ayres, M.P.; Larsson, S. Assessing the impact of climate change on outbreak potential. In Insect Outbreaks Revisited; Barbosa, P., Schultz, J.C., Letourneau, D., Eds.; Blackwell Publishing Ltd: Oxford, UK, 2011. accepted.
[25]  White, T.C.R. Plant vigour versus plant stress: A false dichotomy. Oikos 2009, 118, 807–808.
[26]  Population Cycles: The Case for Trophic Interactions; Berryman, A.A., Ed.; Oxford University Press: New York, NY, USA, 2002.
[27]  Martinat, P.J. The role of climatic variation and weather on forest insect outbreaks. In Insect Outbreaks; Barbosa, P., Schultz, J.C., Eds.; Academic Press Inc.: San Diego, CA, USA, 1987; pp. 241–268.
[28]  Benton, T.G.; St Clair, J.J.H.; Plaistow, S.J. Maternal effects mediated by maternal age: From life histories to population dynamics. J. Anim. Ecol. 2008, 77, 1038–1046.
[29]  Hunter, A.F. Traits that distinguish outbreaking and nonoutbreaking macrolepidoptera feeding on northern hardwood trees. Oikos 1991, 60, 275–282.
[30]  Larsson, S.; Bj?rkman, C.; Kidd, N.A.C. Outbreaks in diprionid sawflies: Why some species and not others? In Sawfly Life History Adaptations to Woody Plants; Wagner, M.R., Raffa, K.F., Eds.; Academic Press: San Diego, CA, USA, 1993; pp. 453–483.
[31]  Bj?rkman, C.; Larsson, S.; Bommarco, R. Oviposition preferences in pine sawflies: A trade-off between larval growth and defence against natural enemies. Oikos 1997, 79, 45–52.
[32]  Koricheva, J.; Klapwijk, M.J.; Bj?rkman, C. Implications of life history traits and host plant characteristics for insect herbivore population dynamics. In Insect Outbreaks Revisited; Barbosa, P., Schultz, J.C., Letourneau, D., Eds.; Blackwell Publishing Ltd: Oxford, UK, 2011. accepted.
[33]  Honek, A. Intraspecific variation in body size and fecundity in insects—A general relationship. Oikos 1993, 66, 483–492.
[34]  van Asch, M.; Visser, M.E. Phenology of forest caterpillars and their host trees: The importance of synchrony. Annu. Rev. Entomol. 2007, 52, 37–55.
[35]  Dixon, A.F.G. Climate change and phenological asynchrony. Ecol. Entomol. 2003, 28, 380–381.
[36]  van Dongen, S.; Backeljau, T.; Matthysen, E.; Dhondt, A.A. Synchronization of hatching date with budburst of individual host trees (Quercus robur) in the winter moth (Operophtera brumata) and its fitness consequences. J. Anim. Ecol. 1997, 66, 113–121.
[37]  Hunter, A.F.; Elkinton, J.S. Effects of synchrony with host plant on populations of a spring-feeding Lepidopteran. Ecology 2000, 81, 1248–1261.
[38]  Visser, M.E.; Both, C. Shifts in phenology due to global climate change: The need for a yardstick. P. Roy. Soc. B.-Biol. Sci. 2006, 272, 2561–2569.
[39]  Uvarov, B.P. Insects and climate. Trans. Ent. Soc. Lond. 1931, 79, 1–232.
[40]  O'Connor, M.I. Warming strengthens an herbivore-plant interaction. Ecology 2009, 90, 388–398.
[41]  Berggren, ?.; Bj?rkman, C.; Bylund, H.; Ayres, M.P. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 2009, 118, 1121–1126.
[42]  Bj?rkman, C.; Berggren, ?.; Bylund, H. Causes behind insect folivory patterns in latitudinal gradients. J. Ecol. 2011, 99, 367–369.
[43]  Hanski, I. Small mammal predation and the population dynamics of Neodiprion sertifer. In Population Dynamics of Forest Insects; Watt, A.D., Leather, S.R., Hunter, M.D., Kidd, N.A.C., Eds.; Intercept: Andover, MA, USA and Hampshire, UK, 1990; pp. 253–262.
[44]  Holling, C.S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 1959, 91, 385–398.
[45]  Kouki, J.; Lyytik?inen-Saarenmaa, P.; Henttonen, H.; Niemel?, P. Cocoon predation an diprionid sawflies: The effect of forest fertility. Oecologia 1998, 116, 482–488.
[46]  Larsson, S.; Ekbom, B.; Bj?rkman, C. Influence of plant quality on pine sawfly population dynamics. Oikos 2000, 89, 440–450.
[47]  Olofsson, E. Mortality factors in a population of Neodiprion sertifer (Hymenoptera, Diprionidae). Oikos 1987, 48, 297–303.
[48]  Pschorn-Walcher, H. The ecology of Neodiprion sertifer (Geoffr.) (Hymenoptera: Diprionidae) and a review of its parasite complex in Europe. Commonw. Inst. Biol. Contr. Tech. Bull. 1965, 5, 33–97.
[49]  Hanski, I.; Parviainen, P. Cocoon predation by small mammals, and pine sawfly population dynamics. Oikos 1985, 45, 125–136.
[50]  H?rnfeldt, B. Long-term decline in numbers of cyclic voles in boreal Sweden: Analysis and presentation of hypotheses. Oikos 2004, 107, 376–392.
[51]  Anderbrant, O. Gallery construction and oviposition of the bark beetle, Ips typographus (Coleoptera, Scolytidea) at different breeding densities. Ecol. Entomol. 1990, 15, 1–8.
[52]  Christiansen, E. Ips Ceratocystis—Infection of the Norway spruce—What is the deadly dosage. J. Appl. Entomol. 1985, 99, 6–11.
[53]  Sykes, M.T.; Prentice, I.C.; Smith, B.; Cramer, W.; Venevsky, S. An introduction to the European terrestrial ecosystem modelling activity. Global Ecol. Biogeogr. 2001, 10, 581–593.
[54]  Smith, B.; Prentice, I.C.; Sykes, M.T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr. 2001, 10, 621–637.
[55]  Miller, P.A.; Giesecke, T.; Hickler, T.; Bradshaw, R.H.W.; Smith, B.; Seppa, H.; Valdes, P.J.; Sykes, M.T. Exploring climatic and biotic controls on Holocene vegetation change in Fennoscandia. J. Ecol. 2008, 96, 247–259.
[56]  Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; Thonicke, K.; Venevsky, S. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol. 2003, 9, 161–185.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133