The physiological principles predicting growth (3-PG) model is generally used to estimate gross primary productivity (GPP) in forest plantations. All existing parameter values in the 3-PG model for GPP estimation have been set as the standard values for eucalyptus and pine plantations. We propose that the 3-PG model can be applied to deciduous broadleaf forests dominated by Betula platyphylla via appropriate parameterization of their structure and functions. The allometric relationships between stem biomass and stem diameter, and between foliage biomass and stem biomass, were determined for the biomass partitioning ratio. Additionally, a temperature modifier was considered appropriate because it affected canopy quantum efficiency. After parameterization, the model showed a good correlation between the estimated results and the data from experimental plots in central and northern Japan. At both sites, GPP peaked around August and was 0 during the winter, when the canopy is bare of leaves. Furthermore, a sensitivity analysis was conducted to determine the most influential parameter relative to the output. GPP was sensitive to changes in canopy quantum efficiency and optimum temperature. Among the meteorological data used, solar radiation and temperature had great impacts on GPP, therefore, these parameters should be carefully considered to produce accurate results.
References
[1]
Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90.
[2]
Landsberg, J.J.; Gower, S. Application of Physiological Ecology to Forest Management; Academic Press: San Diego, CA, USA, 1997.
[3]
Waring, R.H. A process-based model analysis of environmental limitations on growth of Sitka spruce plantations in Great Britain. Forestry 2000, 73, 65–79.
[4]
Coops, N.C.; Waring, R.H.; Landsberg, J.J. Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite derived estimates of canopy photosynthetic capacity. Forest. Ecol. Manage. 1998, 104, 113–127.
[5]
Landsberg, J.J.; Johnsen, K.H.; Albaugh, T.J.; Allen, L.; McKeand, S.E. Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments. Forest. Sci. 2000, 47, 43–51.
[6]
Law, B.E.; Waring, R.H.; Anthoni, P.M.; Aber, J.D. Measurements of gross and net ecosystem productivity and water vapour exchange of a Pinus ponderosa ecosystem, and an evaluation of two generalized models. Glob. Change Biol. 2000, 6, 155–168.
[7]
Dye, P.J. Modelling growth and water use in four Pinus patula stands with the 3-PG model. South Afr. Forest. J. 2001, 191, 53–63.
[8]
Landsberg, J.J.; Waring, R.H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest. Ecol. Manage. 1997, 95, 209–228.
[9]
Landsberg, J.J.; Waring, R.H.; Coops, N.C. Performance of the forest productivity model 3-PG applied to a wide range of forest types. Forest. Ecol. Manage. 2003, 172, 199–214.
[10]
Sands, P.J.; Landbergs, J.J. Parameterisation of 3-PG for plantation grown Eucalyptus globules. Forest. Ecol. Manage. 2002, 163, 273–292.
[11]
Almeida, A.C.; Landsberg, J.J.; Sands, P.J. Parameterisation of 3-PG model for fast-growing Eucalyptus grandis plantations. Forest. Ecol. Manage. 2004, 193, 179–195.
[12]
Dye, P.J.; Jacobs, S.; Drew, D. Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa. Forest. Ecol. Manage. 2004, 193, 197–218.
[13]
Coops, N.C.; Waring, R.H. Estimating forest productivity in the eastern Siskiyou Mountains of southwest Oregon using a satellite driven process model, 3-PGS. Can. J. Forest. Res. 2001, 31, 143–154.
[14]
Coops, N.C.; Waring, R.H. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS. Remote Sens. Environ. 2001, 75, 324–334.
[15]
Whitehead, D.; Hall, G.M.J.; Walcroft, A.S.; Brown, K.J.; Landsberg, J.J.; Tissue, D.T.; Turnbull, M.H.; Griffin, K.L.; Schuster, W.S.F.; Carswell, F.E.; Trotter, C.M.; James, I.L.; Norton, D.A. Analysis of the growth of rimu (Dacrydium cupressinum) in South Westland, New Zealand, using process-based simulation models. Int. J. Biometeorol. 2002, 46, 66–75.
[16]
Almeida, A.C.; Landsberg, J.J.; Sands, P.J.; Ambrogi, M.S.; Fonseca, S.; Barddal, S.M.; Bertolucci, F.L. Needs and opportunities for using a process-based productivity model as a practical tool in fast growing Eucalyptus plantation. Forest. Ecol. Manage. 2004, 193, 167–177.
[17]
Arneth, A.; Kelliher, F.M.; McSeveny, T.M.; Byers, J.N. Net ecosystem productivity, net primary productivity and ecosystem carbon sequestration in a Pinus radiata plantation subject to soil water deficit. Tree Physiol. 1998, 18, 785–793.
[18]
Waring, R.H.; Landsberg, J.J.; Williams, M. Net primary production of forests: A constant fraction of gross primary production. Tree Physiol. 1998, 18, 129–134.
[19]
Ohtsuka, T.; Akiyama, T.; Hashimoto, Y.; Inatomi, M.; Sakai, T.; Jia, S.; Mo, W.; Tsuda, S.; Koizumi, H. Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower. Agr. Forest. Meteorol. 2005, 143, 27–38.
[20]
Site Information. Asiaflux: Tsukuba, Japan, 2009. Available online: http://www.asiaflux.net/sf_fsreast.html (accessed on 9 May 2009).
[21]
Saigusa, N.; Yamamoto, S.; Murayama, S.; Kondo, H.; Nishimura, N. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agr. Forest. Meteorol. 2002, 112, 203–215.
[22]
Nasahara, K.N.; Muraoka, H.; Nagai, S.; Mikami, H. Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agr. Forest. Meteorol. 2008, 148, 1136–1146.
[23]
Nakai, Y.; Kitamura, K.; Suzuki, S.; Abe, S. Year-long carbon dioxide exchange above a broadleaf deciduous forest in Sapporo, Northern Japan. Tellus 2003, 55B, 305–312.
[24]
Nightingale, J.M.; Hill, M.J.; Phinn, S.R.; Davies, I.D.; Held, A.A.; Erskine, P.D. Use of 3-PG and 3-PGS to simulate forest growth dynamics of Australian tropical rainforest: I. Parameterisation and calibration for old-growth, regenerating and plantation forests. Forest. Ecol. Manage. 2008, 254, 122–133.
[25]
Maruyama, K.; Fukumoto, Y.; Kamitani, T. The daily radial fluctuation of trunks of some deciduous broad-leaved tree and its controlling factors. J. Jpn. Forest. Soc. 1985, 67, 148–152. (in Japanese).
[26]
Komiyama, A.; Inoue, S.; Ishikawa, T. Characteristics of the seasonal diameter growth of twenty-five species of deciduous broad-leaved trees. J. Jpn. Forest. Soc. 1987, 69, 379–385. (in Japanese).
[27]
Esprey, L.J.; Sands, P.J.; Smith, C.W. Understanding 3-PG using a sensitivity analysis. Forest. Ecol. Manage. 2004, 193, 235–250.
[28]
Ito, A.; Saigusa, N.; Murayama, S.; Yamamoto, S. Modeling of gross and net carbon dioxide exchange over a cool-temperate deciduous broad-leaved forest in Japan: Analysis of seasonal and interannual change. Agr. Forest. Meteorol. 2005, 134, 122–134.
[29]
Battaglia, M.; Sands, P.J. Application of sensitivity analysis to model of Eucalyptus globules plantation productivity. Ecol. Model. 1998, 111, 237–259.