全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Underdetermined Blind Source Separation Algorithm Based on Normal Vector of Hyperplane
基于超平面法矢量的欠定盲信号分离算法

Keywords: Underdetermined blind signal separation(BSS),sparse component analysis(SCA),hyperplane clustering,normal vector,k-source interval
欠定盲信号分离(BSS)
,稀疏成分分析(SCA),超平面聚类,法矢量,k源区间

Full-Text   Cite this paper   Add to My Lib

Abstract:

Discussion of blind signal separation problem under underdetermined case(i.e.,the case of less observed signals than sources)is presented.First,a formula to calculate the normal vector of any hyperplane is given and a mixing matrix recovery algorithm based on the normal vector of any hyperplane is proposed.Second,for audio signal,k-source intervals are introduced and a method to detect them is proposed.So,the algorithms under the k-SCA condition are extended to blind non-sparse signal separation.To reconstruct the sources,a new algorithm is proposed to simplify the l~1-norm solution.Several experiments demonstrate the performance of the proposed algorithm.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133