全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of forest canopy closure by using partial least square regression.
采用偏最小二乘回归方法估测森林郁闭度

Keywords: forest canopy closure,remote sensing,terrain indices,partial least square regression,Bootstrap approach
森林郁闭度
,遥感,地形因子,偏最小二乘回归,Bootstrap方法,最小,回归方法,估测,森林郁闭度,regression,partial,least,square,closure,canopy,forest,量的差异,地形地貌,植被,地带性,研究,地区,方法筛选,相对偏差,建立模型,构造,结果

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on remote sensing and forest resources inventory data,this paper approached the feasibility of using Bootstrap approach to select optimal variables and using partial least square(PLS) regression to build a model for estimating forest canopy closure.The results showed that whether using a model built with all variables or a model with the optimal variables selected by Bootstrap approach,the relative deviation in estimating forest canopy closure was about 5%.The optimal variables selected in this paper differed greatly with those in the studies for other areas,suggesting that besides selection method,zonal vegetation and terrain could also induce the differences of selected optimal variables for the estimation of forest canopy closure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133