全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Retinol Metabolism in the Mollusk Osilinus lineatus Indicates an Ancient Origin for Retinyl Ester Storage Capacity

DOI: 10.1371/journal.pone.0035138

Full-Text   Cite this paper   Add to My Lib

Abstract:

Although retinoids have been reported to be present and active in vertebrates and invertebrates, the presence of mechanisms for retinoid storage in the form of retinyl esters, a key feature to maintain whole-organism retinoid homeostasis, have been considered to date a vertebrate innovation. Here we demonstrate for the first time the presence of retinol and retinyl esters in an invertebrate lophotrochozoan species, the gastropod mollusk Osilinus lineatus. Furthermore, through a pharmacological approach consisting of intramuscular injections of different retinoid precursors, we also demonstrate that the retinol esterification pathway is active in vivo in this species. Interestingly, retinol and retinyl esters were only detected in males, suggesting a gender-specific role for these compounds in the testis. Females, although lacking detectable levels of retinol or retinyl esters, also have the biochemical capacity to esterify retinol, but at a lower rate than males. The occurrence of retinyl ester storage capacity, together with the presence in males and females of active retinoids, i.e., retinoic acid isomers, indicates that O. lineatus has a well developed retinoid system. Hence, the present data strongly suggest that the capacity to maintain retinoid homeostasis has arisen earlier in Bilateria evolution than previously thought.

References

[1]  Malik MA, Blusztajn JK, Greenwood CE (2000) Nutrients as trophic factors in neurons and the central nervous system: Role of retinoic acid. J Nutr Biochem 11: 2–13.
[2]  Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66: 606–630.
[3]  Theodosiou M, Laudet V, Schubert M (2010) From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci 67: 1423–1445.
[4]  Nowickyj SM, Chithalen JV, Cameron D, Tyshenko MG, Petkovich M, et al. (2008) Locust retinoid X receptors: 9-cis-retinoic acid in embryos from a primitive insect. Proc Nat Acad Sci USA 105: 9540–9545.
[5]  Leid M, Kastner P, Chambon P (1992) Multiplicity generates diversity in the retinoic acid signaling pathways. Trends Biochem Sci 17: 427–433.
[6]  Marlétaz F, Holland LZ, Laudet V, Schubert M (2006) Retinoic acid signaling and the evolution of chordates. Int J Biol Sci 2: 38–47.
[7]  Sim?es-Costa MS, Azambuja AP, Xavier-Neto J (2008) The search for non-chordate retinoic acid signaling: Lessons from chordates. J Exp Zool B Mol Dev Evol 310: 54–72.
[8]  Albalat R (2009) The retinoic acid machinery in invertebrates: Ancestral elements and vertebrate innovations. Mol Cell Endocrinol 313: 23–35.
[9]  Dmetrichuk JM, Carlone RL, Jones TRB, Vesprini ND, Spencer GE (2008) Detection of endogenous retinoids in the molluscan CNS and characterization of the trophic and tropic actions of 9-cis retinoic acid on isolated neurons. J Neurosci 28: 13014–13024.
[10]  Dalfó D, Albalat R, Molotkov A, Duester G, González-Duarte R (2002) Retinoic acid synthesis in the prevertebrate amphioxus involves retinol oxidation. Dev Genes Evol 212: 388–393.
[11]  Créton R, Zwaan G, Dohmen R (1993) Specific developmental defects in molluscs after treatment with retinoic acid during gastrulation. Develop Growth & Differ 35: 357–364.
[12]  Romero R, Bueno D (2001) Disto-proximal regional determination and intercalary regeneration in planarians, revealed by retinoic acid induced disruption of regeneration. Int J Dev Biol 45: 669–673.
[13]  Castro LFC, Lima D, Machado A, Melo C, Hiromori H, et al. (2007) Imposex induction is mediated through the Retinoid X Receptor signalling pathway in the neogastropod Nucella lapillus. Aquat Toxicol 85: 57–66.
[14]  Zega G, De Bernardi F, Groppeli S, Pennati R (2009) Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype. Aquat Toxicol 91: 255–261.
[15]  Albalat R, Brunet F, Laudet V, Schubert M (2011) Evolution of retinoid and steroid signaling: Vertebrate diversification from an amphioxus perspective. Genome Biol Evol 3: 985–1005.
[16]  Campo-Paysaa F, Marlétaz F, Laudet V, Schubert M (2008) Retinoic acid signaling in development: Tissue-specific functions and evolutionary origins. Genesis 46: 640–656.
[17]  Albalat R, Ca?estro C (2009) Identification of Aldh 1a, Cyp26 and RAR orthologs in protostomes pushes back the retinoic acid genetic machinery in evolutionary time to the bilaterian ancestor. Chem Biol Interact 178: 188–196.
[18]  Hopkins PM, Durica D, Washington T (2008) RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comp Biochem Physiol A 151: 602–614.
[19]  Crothers JH (2001) Common topshells: An introduction to the biology of Osilinus lineatus with notes on other species in the genus. Field Stud 10: 115–160.
[20]  Desai BN (1966) The biology of Monodonta lineata (da Costa). Proc Malac Soc Lond 37: 1–17.
[21]  Gesto M, Castro LFC, Reis-Henriques MA, Santos MM (2012) Tissue-specific distribution patterns of retinoids and didhydroretinoids in rainbow trout Oncorhynchuss mykiss. Comp Biochem Physiol B 161: 69–78.
[22]  Wingerath T, Stahl W, Sies H (1995) β-Cryptoxanthin selectively increases in human chylomicrons upon ingestion of tangerine concentrate rich in β-Cryptoxanthin esters. Arch Biochem Biophys 324: 385–390.
[23]  Suh MJ, Tang XH, Gudas LJ (2006) Structure elucidation of retinoids in biological samples using postsource decay laser desorption/ionization mass spectrometry after high-performance liquid chromatography separation. Anal Chem 78: 5719–5728.
[24]  Kane M, Folias AE, Napoli JL (2008) HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues. Anal Biochem 378: 71–79.
[25]  Gundersen TE, Bastani NE, Blomhoff R (2007) Quantitative high-throughput determination of endogenous retinoids in human plasma using triple-stage liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21: 1176–1186.
[26]  Ogino Y, Suzuki K, Haraguchi R, Satoh Y, Dolle P, et al. (2001) External genitalia formation. Role of fibroblast growth factor, retinoic acid signaling and distal urethral epithelium. Ann N Y Acad Sci 948: 13–31.
[27]  Kawamura K, Hara K, Fujiwara S (1993) Developmental role of endogenous retinoids in the determination of morphallactic field in budding tunicates. Development 117: 835–845.
[28]  Irie T, Kajiwara S, Seki T (2003) Storage of retinal in the eggs of the ascidian, Halocynthia roretzi. Comp Biochem Physiol B 134: 221–230.
[29]  Irie T, Kajiwara S, Kojima N, Senoo H, Seki T (2004) Retinal is the essential form of retinoid for storage and transport in the adult of the ascidian Halocynthia roretzi. Comp Biochem Physiol B 139: 597–606.
[30]  Biesalski HK, Doepner G, Tzimas G, Gamulin V, Schr?der HC, et al. (1992) Modulation of myb gene expression in sponges by retinoic acid. Oncogene 7: 1765–1774.
[31]  Wong CK, Wong CK (2003) HPLC pigment analysis of marine phytoplankton during a red tide occurrence in Tolo Harbour, Hong Kong. Chemosphere 52: 1633–1640.
[32]  Irie T, Sugimoto T, Ueki N, Senoo H, Seki T (2010) Retinoid storage in the egg of reptiles and birds. Comp Biochem Physiol B 157: 113–118.
[33]  Vernet N, Dennefeld C, Rochette-Egly C, Oulad-Abdelghani M, Chambon P, et al. (2006) Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 147: 96–110.
[34]  Kurlandsky SB, Gamble MV, Ramakrishnan R, Blaner WS (1995) Plasma delivery of retinoic acid to tissues in the rat. J Biol Chem 270: 17850–17857.
[35]  Alsop D, Brown S, Van Der Kraak G (2007) The effects of copper and benzo[a]pyrene on retinoids and reproduction in zebrafish. Aquat Toxicol 82: 281–295.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133