|
A comparison study between observations and simulation results of Barghouthi model for O+ and H+ outflows in the polar windAbstract: To advance our understanding of the effect of wave-particle interactions on ion outflows in the polar wind region and the resulting ion heating and escape from low altitudes to higher altitudes, we carried out a comparison between polar wind simulations obtained using Barghouthi model with corresponding observations obtained from different satellites. The Barghouthi model describes O+ and H+ outflows in the polar wind region in the range 1.7 RE to 13.7 RE, including the effects of gravity, polarization electrostatic field, diverging geomagnetic field lines, and wave-particle interactions. Wave-particle interactions were included into the model by using a particle diffusion equation, which depends on diffusion coefficients determined from estimates of the typical electric field spectral density at relevant altitudes and frequencies. We provide a formula for the velocity diffusion coefficient that depends on altitude and velocity, in which the velocity part depends on the perpendicular wavelength of the electromagnetic turbulence λ⊥. Because of the shortage of information about λ⊥, it was included into the model as a parameter. We produce different simulations (i.e. ion velocity distributions, ions density, ion drift velocity, ion parallel and perpendicular temperatures) for O+ and H+ ions, and for different λ⊥. We discuss the simulations in terms of wave-particle interactions, perpendicular adiabatic cooling, parallel adiabatic cooling, mirror force, and ion potential energy. The main findings of the simulations are as follows: (1) O+ ions are highly energized at all altitudes in the simulation tube due to wave-particle interactions that heat the ions in the perpendicular direction, and part of this gained energy transfer to the parallel direction by mirror force, resulting in accelerating O+ ions along geomagnetic field lines from lower altitudes to higher altitudes. (2) The effect of wave-particle interactions is negligible for H+ ions at altitudes below ~7 RE, while it is important for altitudes above 7 RE. For O+ wave particle interaction is very significant at all altitudes. (3) For certain λ⊥ and at points, altitudes, where the ion gyroradius is equal to or less than λ⊥, the effect of wave-particle interactions is independent of the velocity and it depends only on the altitude part of the velocity diffusion coefficient; however, the effect of wave-particle interactions reduce above that point, called saturation point, and the heating process turns to be self-limiting heating. (4) The most interesting result is the appearance of O+ conics and toroids at low altitudes and continue to appear at high altitudes; however, they appear at very high altitudes for H+ ions. We compare quantitatively and qualitatively between the simulation results and the corresponding observations. As a result of many comparisons, we find that the best agreement occurs when λ⊥ equals to 8 km. The quantitative comparisons show that many characteristics of the observati
|