The present study was to explore the biological responses of the newly compound, MJ-29 in murine myelomonocytic leukemia WEHI-3 cells in vitro and in vivo fates. We focused on the in vitro effects of MJ-29 on ER stress and mitochondria-dependent apoptotic death in WEHI-3 cells, and to hypothesize that MJ-29 might fully impair the orthotopic leukemic mice. Our results indicated that a concentration-dependent decrease of cell viability was shown in MJ-29-treated cells. DNA content was examined utilizing flow cytometry, whereas apoptotic populations were determined using annexin V/PI, DAPI staining and TUNEL assay. Increasing vital factors of mitochondrial dysfunction by MJ-29 were further investigated. Thus, MJ-29-provaked apoptosis of WEHI-3 cells is mediated through the intrinsic pathway. Importantly, intracellular Ca2+ release and ER stress-associated signaling also contributed to MJ-29-triggered cell apoptosis. We found that MJ-29 stimulated the protein levels of calpain 1, CHOP and p-eIF2α pathways in WEHI-3 cells. In in vivo experiments, intraperitoneal administration of MJ-29 significantly improved the total survival rate, enhanced body weight and attenuated enlarged spleen and liver tissues in leukemic mice. The infiltration of immature myeloblastic cells into splenic red pulp was reduced in MJ-29-treated leukemic mice. Moreover, MJ-29 increased the differentiations of T and B cells but decreased that of macrophages and monocytes. Additionally, MJ-29-stimulated immune responses might be involved in anti-leukemic activity in vivo. Based on these observations, MJ-29 suppresses WEHI-3 cells in vitro and in vivo, and it is proposed that this potent and selective agent could be a new chemotherapeutic candidate for anti-leukemia in the future.
References
[1]
Lee SJ, Kim KH, Park JS, Jung JW, Kim YH, et al. (2007) Comparative analysis of cell surface proteins in chronic and acute leukemia cell lines. Biochem Biophys Res Commun 357: 620–626.
[2]
Stahnke K, Eckhoff S, Mohr A, Meyer LH, Debatin KM (2003) Apoptosis induction in peripheral leukemia cells by remission induction treatment in vivo: selective depletion and apoptosis in a CD34+ subpopulation of leukemia cells. Leukemia 17: 2130–2139.
[3]
Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6: 149–165.
[4]
Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, et al. (2004) Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia 18: 1951–1963.
[5]
Landrigan PJ (1995) Childhood leukemias. N Engl J Med 333: 1286.
[6]
Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, et al. (2011) Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ Toxicol.
[7]
Liu W, Lee HW, Liu Y, Wang R, Rodgers GP (2010) Olfactomedin 4 is a novel target gene of retinoic acids and 5-aza-2′-deoxycytidine involved in human myeloid leukemia cell growth, differentiation, and apoptosis. Blood 116: 4938–4947.
[8]
Sakoe Y, Sakoe K, Kirito K, Ozawa K, Komatsu N (2010) FOXO3A as a key molecule for all-trans retinoic acid-induced granulocytic differentiation and apoptosis in acute promyelocytic leukemia. Blood 115: 3787–3795.
[9]
Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Malone WA, et al. (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 130: 467S–471S.
[10]
Lavrik IN, Golks A, Krammer PH (2005) Caspases: pharmacological manipulation of cell death. J Clin Invest 115: 2665–2672.
[11]
Kadowaki H, Nishitoh H, Ichijo H (2004) Survival and apoptosis signals in ER stress: the role of protein kinases. J Chem Neuroanat 28: 93–100.
[12]
Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11: 381–389.
[13]
Lee KW, Bode AM, Dong Z (2011) Molecular targets of phytochemicals for cancer prevention. Nat Rev Cancer 11: 211–218.
[14]
Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9: 790–803.
[15]
Perez EA (2009) Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8: 2086–2095.
[16]
Sitaresmi MN, Mostert S, Purwanto I, Gundy CM, Sutaryo , et al. (2009) Chemotherapy-related side effects in childhood acute lymphoblastic leukemia in indonesia: parental perceptions. J Pediatr Oncol Nurs 26: 198–207.
[17]
Itzykson R, Ayari S, Vassilief D, Berger E, Slama B, et al. (2009) Is there a role for all-trans retinoic acid in combination with recombinant erythropoetin in myelodysplastic syndromes? A report on 59 cases. Leukemia 23: 673–678.
[18]
Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10: 194–204.
[19]
Liu T, Raetz E, Moos PJ, Perkins SL, Bruggers CS, et al. (2002) Diversity of the apoptotic response to chemotherapy in childhood leukemia. Leukemia 16: 223–232.
[20]
Hour MJ, Yang JS, Lien JC, Kuo SC, Huang LJ (2007) Synthesis and cytotoxicity of 6-pyrrolidinyl-2-(2-substituted phenyl)-4-quinazolinones. J Chin Chem Soc 54: 785–790.
[21]
Yang JS, Hour MJ, Huang WW, Lin KL, Kuo SC, et al. (2010) MJ-29 inhibits tubulin polymerization, induces mitotic arrest, and triggers apoptosis via cyclin-dependent kinase 1-mediated Bcl-2 phosphorylation in human leukemia U937 cells. J Pharmacol Exp Ther 334: 477–488.
[22]
Hour MJ, Huang LJ, Kuo SC, Xia Y, Bastow K, et al. (2000) 6-Alkylamino- and 2,3-dihydro-3′-methoxy-2-phenyl-4-quinaz?olinonesand related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem 43: 4479–4487.
[23]
Yang JS, Hour MJ, Kuo SC, Huang LJ, Lee MR (2004) Selective induction of G2/M arrest and apoptosis in HL-60 by a potent anticancer agent, HMJ-38. Anticancer Res 24: 1769–1778.
[24]
Lee ST, Wong PF, Cheah SC, Mustafa MR (2011) Alpha-tomatine induces apoptosis and inhibits nuclear factor-kappa B activation on human prostatic adenocarcinoma PC-3 cells. PLoS One 6: e18915.
[25]
Ceruti S, Beltrami E, Matarrese P, Mazzola A, Cattabeni F, et al. (2003) A key role for caspase-2 and caspase-3 in the apoptosis induced by 2-chloro-2′-deoxy-adenosine (cladribine) and 2-chloro-adenosine in human astrocytoma cells. Mol Pharmacol 63: 1437–1447.
[26]
Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, et al. (2010) Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Mol Nutr Food Res 54: 967–976.
[27]
Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281: 1309–1312.
[28]
Berridge MJ, Bootman MD, Lipp P (1998) Calcium–a life and death signal. Nature 395: 645–648.
[29]
Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38: 713–721.
[30]
Chung JG, Yang JS, Huang LJ, Lee FY, Teng CM, et al. (2007) Proteomic approach to studying the cytotoxicity of YC-1 on U937 leukemia cells and antileukemia activity in orthotopic model of leukemia mice. Proteomics 7: 3305–3317.
[31]
Yang JS, Kok LF, Lin YH, Kuo TC, Yang JL, et al. (2006) Diallyl disulfide inhibits WEHI-3 leukemia cells in vivo. Anticancer Res 26: 219–225.
[32]
Morris PG, Fornier MN (2008) Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 14: 7167–7172.
Furre IE, Shahzidi S, Luksiene Z, Moller MT, Borgen E, et al. (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65: 11051–11060.
[35]
Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, et al. (2011) Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades-mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem Res Toxicol 24: 20–29.
[36]
Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39: 443–455.
[37]
Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13: 363–373.
[38]
Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11: 372–380.
[39]
Quan Z, Gu J, Dong P, Lu J, Wu X, et al. (2010) Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells. Cancer Lett 295: 252–259.
[40]
Choi AY, Choi JH, Yoon H, Hwang KY, Noh MH, et al. (2011) Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells. Eur J Pharmacol 668: 115–126.
[41]
Astashkin EI, Til'kunova NA, Zalepugin DY, Grachev SV (2004) Diallyl sulfide depletes the inositol trisphosphate-sensitive intracellular Ca2+ stores and activates SOC-channels in HL-60 human cells. Dokl Biol Sci 399: 500–502.
[42]
He Q, Na X (2001) The effects and mechanisms of a novel 2-aminosteroid on murine WEHI-3B leukemia cells in vitro and in vivo. Leuk Res 25: 455–461.
[43]
Funk RK, Maxwell TJ, Izumi M, Edwin D, Kreisel F, et al. (2008) Quantitative trait loci associated with susceptibility to therapy-related acute murine promyelocytic leukemia in hCG-PML/RARA transgenic mice. Blood 112: 1434–1442.
[44]
Lin SS, Hung CF, Ho CC, Liu YH, Ho HC, et al. (2000) Effects of ellagic acid by oral administration on N-acetylation and metabolism of 2-aminofluorene in rat brain tissues. Neurochem Res 25: 1503–1508.
[45]
Chen JC, Chung JG, Lin KM (2000) Effects of luteolin on arylamine N-acetyltransferase activity in human liver tumour cells. Cytobios 102: 95–106.
[46]
Moretta L (2007) NK cell-mediated immune response against cancer. Surg Oncol 16: Suppl 1S3–5.
[47]
Lin SY, Sheen LY, Chiang BH, Yang JS, Pan JH, et al. (2010) Dietary effect of Antrodia Camphorate extracts on immune responses in WEHI-3 leukemia BALB/c mice. Nutr Cancer 62: 593–600.
[48]
Ji BC, Hsu WH, Yang JS, Hsia TC, Lu CC, et al. (2009) Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem 57: 7596–7604.
[49]
Li L, Han W, Gu Y, Qiu S, Lu Q, et al. (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67: 4894–4903.
[50]
Yu FS, Yang JS, Yu CS, Lu CC, Chiang JH, et al. (2011) Safrole induces apoptosis in human oral cancer HSC-3 cells. J Dent Res 90: 168–174.
[51]
Wu PP, Liu KC, Huang WW, Ma CY, Lin H, et al. (2011) Triptolide induces apoptosis in human adrenal cancer NCI-H295 cells through a mitochondrial-dependent pathway. Oncol Rep 25: 551–557.
[52]
Wu CL, Huang AC, Yang JS, Liao CL, Lu HF, et al. (2011) Benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC)-mediated generation of reactive oxygen species causes cell cycle arrest and induces apoptosis via activation of caspase-3, mitochondria dysfunction and nitric oxide (NO) in human osteogenic sarcoma U-2 OS cells. J Orthop Res 29: 1199–1209.
[53]
Petronilli V, Miotto G, Canton M, Brini M, Colonna R, et al. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76: 725–734.
[54]
Zhou GB, Kang H, Wang L, Gao L, Liu P, et al. (2007) Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood 109: 3441–3450.
[55]
Ripamonti M, Capolongo L, Melegaro G, Gornati C, Bargiotti A, et al. (1996) Morpholinylanthracyclines: cytotoxicity and antitumor activity of differently modified derivatives. Invest New Drugs 14: 139–146.
[56]
Hendriks JJ, Slaets H, Carmans S, de Vries HE, Dijkstra CD, et al. (2008) Leukemia inhibitory factor modulates production of inflammatory mediators and myelin phagocytosis by macrophages. J Neuroimmunol 204: 52–57.
[57]
Tsou MF, Peng CT, Shih MC, Yang JS, Lu CC, et al. (2009) Benzyl isothiocyanate inhibits murine WEHI-3 leukemia cells in vitro and promotes phagocytosis in BALB/c mice in vivo. Leuk Res 33: 1505–1511.
[58]
Chang YH, Yang JS, Yang JL, Wu CL, Chang SJ, et al. (2009) Ganoderma lucidum extracts inhibited leukemia WEHI-3 cells in BALB/c mice and promoted an immune response in vivo. Biosci Biotechnol Biochem 73: 2589–2594.