West Nile virus (WNV) is a blood-borne pathogen that causes systemic infections and serious neurological disease in human and animals. The most common route of infection is mosquito bites and therefore, the virus must cross a number of polarized cell layers to gain access to organ tissue and the central nervous system. Resistance to trans-cellular movement of macromolecules between epithelial and endothelial cells is mediated by tight junction complexes. While a number of recent studies have documented that WNV infection negatively impacts the barrier function of tight junctions, the intracellular mechanism by which this occurs is poorly understood. In the present study, we report that endocytosis of a subset of tight junction membrane proteins including claudin-1 and JAM-1 occurs in WNV infected epithelial and endothelial cells. This process, which ultimately results in lysosomal degradation of the proteins, is dependent on the GTPase dynamin and microtubule-based transport. Finally, infection of polarized cells with the related flavivirus, Dengue virus-2, did not result in significant loss of tight junction membrane proteins. These results suggest that neurotropic flaviviruses such as WNV modulate the host cell environment differently than hemorrhagic flaviviruses and thus may have implications for understanding the molecular basis for neuroinvasion.
References
[1]
Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73: 283–309.
[2]
Teoh KT, Siu YL, Chan WL, Schluter MA, Liu CJ, et al. (2010) The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell 21: 3838–3852.
[3]
Golebiewski L, Liu H, Javier RT, Rice AP (2011) The avian influenza virus NS1 ESEV PDZ binding motif associates with Dlg1 and Scribble to disrupt cellular tight junctions. J Virol 85: 10639–10648.
[4]
Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, et al. (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79: 10442–10450.
[5]
Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, et al. (2009) West nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83: 6125–6134.
[6]
Verma S, Kumar M, Gurjav U, Lum S, Nerurkar VR (2010) Reversal of West Nile virus-induced blood-brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397: 130–138.
[7]
Verma S, Lo Y, Chapagain M, Lum S, Kumar M, et al. (2009) West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: Transmigration across the in vitro blood-brain barrier. Virology 385: 425–433.
[8]
Wang P, Dai J, Bai F, Kong KF, Wong SJ, et al. (2008) Matrix metalloproteinase 9 facilitates West Nile virus entry into the brain. J Virol 82: 8978–8985.
[9]
Xu Z, Anderson R, Hobman TC (2011) The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol 85: 5571–5580.
[10]
Hunt TA, Urbanowski MD, Kakani K, Law LM, Brinton MA, et al. (2007) Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2PP2A. Cell Microbiol 9: 2756–2766.
[11]
Takahashi S, Iwamoto N, Sasaki H, Ohashi M, Oda Y, et al. (2009) The E3 ubiquitin ligase LNX1p80 promotes the removal of claudins from tight junctions in MDCK cells. J Cell Sci 122: 985–994.
[12]
Ivanov AI, Nusrat A, Parkos CA (2004) Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol Biol Cell 15: 176–188.
[13]
Daugherty BL, Mateescu M, Patel AS, Wade K, Kimura S, et al. (2004) Developmental regulation of claudin localization by fetal alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 287: L1266–1273.
[14]
Hinshaw JE, Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374: 190–192.
[15]
Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, et al. (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10: 839–850.
[16]
Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16: 530–537.
[17]
Jin M, Snider MD (1993) Role of microtubules in transferrin receptor transport from the cell surface to endosomes and the Golgi complex. J Biol Chem 268: 18390–18397.
[18]
Roeth JF, Williams M, Kasper MR, Filzen TM, Collins KL (2004) HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J Cell Biol 167: 903–913.
[19]
Scheel J, Matteoni R, Ludwig T, Hoflack B, Kreis TE (1990) Microtubule depolymerization inhibits transport of cathepsin D from the Golgi apparatus to lysosomes. J Cell Sci 96(Pt 4): 711–720.
[20]
Jones SM, Howell KE, Henley JR, Cao H, McNiven MA (1998) Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279: 573–577.
[21]
Chuang YC, Lei HY, Liu HS, Lin YS, Fu TF, et al. (2011) Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine 54: 222–231.
[22]
Sips GJ, Wilschut J, Smit JM (2011) Neuroinvasive flavivirus infections. Rev Med Virol.
[23]
Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, et al. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366–1373.
[24]
Diamond MS, Klein RS (2004) West Nile virus: crossing the blood-brain barrier. Nat Med 10: 1294–1295.
[25]
Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, et al. (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189: 111–126.
[26]
Cuadras MA, Feigelstock DA, An S, Greenberg HB (2002) Gene expression pattern in Caco-2 cells following rotavirus infection. J Virol 76: 4467–4482.
[27]
Grone A, Fonfara S, Baumgartner W (2002) Cell type-dependent cytokine expression after canine distemper virus infection. Viral Immunol 15: 493–505.
[28]
Al-Sadi R, Boivin M, Ma T (2009) Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci 14: 2765–2778.
[29]
Al-Sadi RM, Ma TY (2007) IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 178: 4641–4649.
[30]
Zimmerman GA, McIntyre TM, Prescott SM (1985) Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro. J Clin Invest 76: 2235–2246.
[31]
Beatch MD, Hobman TC (2000) Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J Virol 74: 5569–5576.
[32]
He RT, Innis BL, Nisalak A, Usawattanakul W, Wang S, et al. (1995) Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45: 451–461.
[33]
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485.
[34]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
[35]
Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, et al. (2010) Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138: 255–265 e251–253.
[36]
Michikawa H, Fujita-Yoshigaki J, Sugiya H (2008) Enhancement of barrier function by overexpression of claudin-4 in tight junctions of submandibular gland cells. Cell Tissue Res 334: 255–264.
[37]
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, et al. (2006) Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 41: 408–419.
[38]
Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, et al. (2000) Rapid detection of west nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 4066–4071.