[1] | Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70: 813–829.
|
[2] | Feng J, Zhou Y, Campbell SL, Le T, Li E, et al. (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13: 423–430.
|
[3] | Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, et al. (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 281: 15763–15773.
|
[4] | Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28: 10576–10586.
|
[5] | Maddox SA, Schafe GE (2011) Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learn Mem 18: 579–593.
|
[6] | Miller CA, Campbell SL, Sweatt JD (2008) DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem 89: 599–603.
|
[7] | Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, et al. (2010) Cortical DNA methylation maintains remote memory. Nat Neurosci 13: 664–666.
|
[8] | Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53: 857–869.
|
[9] | Monsey MS, Ota KT, Akingbade IF, Hong ES, Schafe GE (2011) Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One 6: e19958.
|
[10] | Lockett GA, Helliwell P, Maleszka R (2010) Involvement of DNA methylation in memory processing in the honey bee. Neuroreport 21: 812–816.
|
[11] | Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193: 801–824.
|
[12] | Menzel R (2001) Searching for the memory trace in a mini-brain, the honeybee. Learn Mem 8: 53–62.
|
[13] | Menzel R, Muller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19: 379–404.
|
[14] | Smith BH, Getz WM (1994) Nonpheromonal Olfactory Processing in Insects. Annual Review of Entomology 39: 351–375.
|
[15] | Grunbaum L, Muller U (1998) Induction of a specific olfactory memory leads to a long-lasting activation of protein kinase C in the antennal lobe of the honeybee. J Neurosci 18: 4384–4392.
|
[16] | Muller U (1996) Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee, Apis mellifera. Neuron 16: 541–549.
|
[17] | Muller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27: 159–168.
|
[18] | Friedrich A, Thomas U, Muller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 24: 4460–4468.
|
[19] | Stollhoff N, Menzel R, Eisenhardt D (2005) Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera). J Neurosci 25: 4485–4492.
|
[20] | Denker M, Finke R, Schaupp F, Grun S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31: 119–133.
|
[21] | Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2: 74–78.
|
[22] | Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci 29: 10191–10202.
|
[23] | Hourcade B, Perisse E, Devaud JM, Sandoz JC (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16: 607–615.
|
[24] | Rath L, Giovanni Galizia C, Szyszka P (2011) Multiple memory traces after associative learning in the honey bee antennal lobe. Eur J Neurosci 34: 352–360.
|
[25] | Sandoz JC, Galizia CG, Menzel R (2003) Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neuroscience 120: 1137–1148.
|
[26] | Faber T, Menzel R (2001) Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften 88: 472–476.
|
[27] | Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. Journal of Neuroscience 27: 11736–11747.
|
[28] | Strube-Bloss MF, Nawrot MP, Menzel R (2011) Mushroom Body Output Neurons Encode Odor-Reward Associations. Journal of Neuroscience 31: 3129–3140.
|
[29] | Szyszka P, Galkin A, Menzel R (2008) Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Front Syst Neurosci 2: 3.
|
[30] | Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319: 1827–1830.
|
[31] | Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, et al. (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8: e1000506.
|
[32] | Shi YY, Huang ZY, Zeng ZJ, Wang ZL, Wu XB, et al. (2011) Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). PLoS One 6: e18808.
|
[33] | Lockett GA, Kucharski R, Maleszka R (2011) DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes Brain Behav.
|
[34] | Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203: 971–983.
|
[35] | Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A 80: 5559–5563.
|
[36] | Bestor TH, Ingram VM (1985) Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells. Proc Natl Acad Sci U S A 82: 2674–2678.
|
[37] | Chen L, MacMillan AM, Chang W, Ezaz-Nikpay K, Lane WS, et al. (1991) Direct identification of the active-site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30: 11018–11025.
|
[38] | Erlanson DA, Chen L, Verdine GL (1993) DNA Methylation through a Locally Unpaired Intermediate. Journal of the American Chemical Society 115: 12583–12584.
|
[39] | Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–220.
|
[40] | Yoder JA, Bestor TH (1998) A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 7: 279–284.
|
[41] | Gabor Miklos GL, Maleszka R (2011) Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav 59: 399–406.
|
[42] | Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, et al. (2006) Functional CpG methylation system in a social insect. Science 314: 645–647.
|
[43] | Beumer JH, Joseph E, Egorin MJ, Covey JM, Eiseman JL (2006) Quantitative determination of zebularine (NSC 309132), a DNA methyltransferase inhibitor, and three metabolites in murine plasma by high-performance liquid chromatography coupled with on-line radioactivity detection. J Chromatogr B Analyt Technol Biomed Life Sci 831: 147–155.
|
[44] | Champion C, Guianvarc'h D, Sénamaud-Beaufort C, Jurkowska RZ, Jeltsch A, et al. (2010) Mechanistic Insights on the Inhibition of C5 DNA Methyltransferases by Zebularine. PLoS ONE. doi:10.1371/journal.pone.0012388. 5(8).
|
[45] | Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, et al. (2003) Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst 95: 399–409.
|
[46] | Cheng JC, Weisenberger DJ, Gonzales FA, Liang G, Xu G-L, et al. (2004) Continous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Molecular and Cellular Biology 24(3): 1270–1278.
|
[47] | Santi DV, Garrett CE, Barr PJ (1983) On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33: 9–10.
|
[48] | Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F (2006) Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res 66: 2794–2800.
|
[49] | van Bemmel DM, Brank AS, Eritja R, Marquez VE, Christman JK (2009) DNA (Cytosine-C5) methyltransferase inhibition by oligodeoxyribonucleotides containing 2-(1H)-pyrimidinone (zebularine aglycon) at the enzymatic target site. Biochem Pharmacol 78: 633–641.
|
[50] | Szyszka P, Demmler C, Oemisch M, Sommer L, Biergans S, et al. (2011) Mind the gap: olfactory trace conditioning in honeybees. J Neurosci 31: 7229–7239.
|