全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Thiol/Disulfide System Plays a Crucial Role in Redox Protection in the Acidophilic Iron-Oxidizing Bacterium Leptospirillum ferriphilum

DOI: 10.1371/journal.pone.0044576

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR), periplasmic thiol oxidation system (DsbA/DsbB) and a c-type cytochrome maturation system (DsbD/DsbE). Upon exposure of L. ferriphilum to reactive oxygen species (ROS)-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

References

[1]  Leichert LI, Jakob U (2004) Protein Thiol Modifications. PLoS Biol 2: e333.
[2]  Martin JL (1995) Thioredoxin a fold for all reasons. Structure 3: 245–250.
[3]  Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72: 111–135.
[4]  Kadokura H, Beckwith J (2010) Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid Redox Signal 13: 1231–1246.
[5]  Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55: 21–48.
[6]  Ruddock LW, Klappa P (1999) Oxidative stress: protein folding with a novel redox switch. Curr Biol 9: 400–402.
[7]  Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54: 439–461.
[8]  Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61: 847–860.
[9]  Zeller T, Klug G (2006) Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. Naturwissenschaften 93: 259–266.
[10]  Quatrini R, Lefimil C, Veloso FA, Pedroso I, Holmes DS, Jedlicki E (2007) Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Res 35: 2153–2166.
[11]  Imlay J (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776.
[12]  Ingledew W (1982) Thiobacillus ferrooxidans. The bioenergetics of an acidophilic chemolithotroph. Biochim Biophys Acta 683: 89–117.
[13]  Maaty WS, Wiedenheft B, Tarlykov P, Schaff N, Heinemann J, et al. (2009) Something old, something new, something borrowed; how the thermoacidophilic archaeon Sulfolobus solfataricus responds to oxidative stress. PLoS ONE 4: e6964.
[14]  Rodrigues VD, Martins PF, Gaziola SA, Azevedo RA, Ottoboni LM (2010) Antioxidant enzyme activity in Acidithiobacillus ferrooxidans LR maintained in contact with chalcopyrite. Proc Biochem 45: 914–918.
[15]  Cerda O, Rivas A, Toledo H (2003) Helicobacter pylori strain ATCC700392 encodes a methyl-accepting chemotaxis receptor protein (MCP) for arginine and sodium bicarbonate. FEMS Microbiol Lett 224: 175–181.
[16]  Altschul SF, Madden TL, Sch?ffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.
[17]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.
[18]  Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher P (2002) PROSITE: a documented database using patterns and profiles as motif descriptors. Brief Bioinform 3: 265–274.
[19]  Yu NY, Wagner JR, Laird MR, Melli G, Rey S, et al. (2010) PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608–1615.
[20]  Bendtsen JD, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.
[21]  Hofmann K, Stoffel W (1993) TMbase-A database of membrane spanning proteins segments. Biol Chem Hoppe-Seyler 374: 166.
[22]  Bagos PG, Liakopoulos TD, Spyropoulos IC, Hamodrakas SJ (2004) PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins. Nucleic Acids Res 32: 400–404.
[23]  Servant F, Bru C, Carrère S, Courcelle E, Gouzy J, Peyruc D, Kahn D (2002) ProDom: automated clustering of homologous domains. Brief Bioinform 3: 246–251.
[24]  Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15: 529–539.
[25]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
[26]  Potamitou A, Holmgren A, Vlamis-Gardikas A (2002) Protein levels of Escherichia coli thioredoxins and glutaredoxins and their relation to null mutants, growth phase, and function. J Biol Chem 277: 18561–18567.
[27]  Arnér ES, Holmgren A (2001) Measurement of thioredoxin and thioredoxin reductase. Curr Protoc Toxicol 7: 4.1–14.
[28]  Lim HW, Lim JL (1995) Direct reduction of DTNB by E. coli thioredoxin reductase. J Biochem Mol Biol 28: 17–20.
[29]  Luthman M, Holmgren A (1982) Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 21: 6628–6633.
[30]  Nieto PA, Covarrubias PC, Jedlicki E, Holmes DS, Quatrini R (2009) Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Mol Biol 10: 63–73.
[31]  Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54: 237–271.
[32]  Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346: 1–8.
[33]  Kranz RG, Richard-Fogal C, Taylor JS, Frawley ER (2009) Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 73: 510–528.
[34]  Reid E, Cole J, Eaves DJ (2001) The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem J 355: 51–58.
[35]  Goulding C, Apostol M, Gleiter S, Parseghian A, Bardwell J, et al. (2004) Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J Biol Chem 279: 3516–3524.
[36]  Pedone E, Limauro D, D'Ambrosio K, De Simone G, Bartolucci S (2010) Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 67: 3797–3814.
[37]  Li B, Lin J, Mi S, Lin J (2010) Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresour Technol 101: 9811–9814.
[38]  Cortés A, Flores R, Norambuena J, Cardenas JP, Quatrini R, et al. (2011) Comparative study of redox stress response in the acidophilic bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. In: Qiu G, Jiang T, Qin W, Liu X, Yang Y, Wang H, editors. Biohydrometallurgy biotech key to unlock mineral resources value. Central South University Press, Changsha, China. 354–357.
[39]  Prinz W, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272: 15661–15667.
[40]  Rigobello MP, Scutari G, Folda A, Bindoli A (2004) Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochem Pharmacol 67: 689–696.
[41]  Newton GL, Arnold K, Price MS, Sherrill C, Delcardayre SB, et al. (1996) Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178: 1990–1995.
[42]  Hochgr?fe F, Mostertz J, P?ther DC, Becher D, Helmann JD, et al. (2007) S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 282: 25981–25985.
[43]  Boylan JA, Hummel CS, Benoit S, Garcia-Lara J, Treglown-Downey J, et al. (2006) Borrelia burgdorferi BB0728 encodes a coenzyme A disulfide reductase whose function suggests a role in intracellular redox and the oxidative stress response. Mol Microbiol 59: 475–486.
[44]  Birch CS, Brasch NE, McCaddon A, Williams JH (2009) A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 47: 184–188.
[45]  Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, et al. (2009) Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 5: 625–627.
[46]  Goltsman DS, Denef VJ, Singer SW, VerBerkmoes NC, Lefsrud M, et al. (2009) Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms. Appl Environ Microbiol 75: 4599–4615.
[47]  Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.
[48]  Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, et al. (2005) Community proteomics of a natural microbial biofilms. Science 308: 1915–1920.
[49]  Dukan S, Nystr?m T (1999) Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274: 26027–26032.
[50]  Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, et al. (2011) Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 10: S18.
[51]  Di Matteo A, Calosci N, Gianni S, Jemth P, Brunori M, et al. (2010) Structural and functional characterization of CcmG from Pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus. Proteins 78: 2213–2221.
[52]  Li Q, Hu HY, Wang WQ, Xu GJ (2001) Structural and redox properties of the leaderless DsbE (CcmG) protein: both active-site cysteines of the reduced form are involved in its function in the Escherichia coli periplasm. Biol Chem 382: 1679–1686.
[53]  Levicán G, Gómez MJ, Chávez R, Orellana O, Moreno-Paz M, Parro V (2012) Comparative genomic analysis reveals novel facts about Leptospirillum spp. cytochromes. J Mol Microbiol Biotechnol 22: 94–104.
[54]  Levicán G, Katz A, de Armas M, Nu?ez H, Orellana O (2007) Regulation of a glutamyl-tRNA synthetase by the heme status. Proc Natl Acad Sci U S A 104: 3135–3140.
[55]  Yarzábal A, Brasseur G, Bonnefoy V (2002) Cytochromes c of Acidithiobacillus ferrooxidans. FEMS Microbiol Lett 209: 189–195.
[56]  Pillay CS, Hofmeyr JH, Rohwer JM (2011) The logic of kinetic regulation in the thioredoxin system. BMC Syst Biol 5: 15–29.
[57]  Li K, Pasternak C, Klug G (2003) Expression of the trxA gene for thioredoxin 1 in Rhodobacter sphaeroides during oxidative stress. Arch Microbiol 180: 484–489.
[58]  Hishinuma S, Ohtsu I, Fujimura M, Fukumori F (2008) OxyR is involved in the expression of thioredoxin reductase TrxB in Pseudomonas putida. FEMS Microbiol Lett 289: 138–145.
[59]  Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ (2001) PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69: 3744–3754.
[60]  Osorio H, Martínez V, Nieto PA, Holmes DS, Quatrini R (2008) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8: 203–220.
[61]  Giles GI, Jacob C (2002) Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383: 375–388.
[62]  Linke K, Jakob U (2003) Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5: 425–434.
[63]  Kumar JK, Tabor S, Richardson CC (2004) Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli. Proc Natl Acad Sci U S A 101: 3759–3764.
[64]  Baker LM, Raudonikiene A, Hoffman PS, Poole LB (2001) Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol 183: 1961–1973.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133