全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Re-evaluation of the Carcinogenic Significance of Hepatitis B Virus Integration in Hepatocarcinogenesis

DOI: 10.1371/journal.pone.0040363

Full-Text   Cite this paper   Add to My Lib

Abstract:

To examine the role of hepatitis B virus (HBV) integration in hepatocarcinogenesis, a systematic comparative study of both tumor and their corresponding non-tumor derived tissue has been conducted in a cohort of 60 HBV associated hepatocellular carcinoma (HCC) patients. By using Alu-polymerase chain reaction (PCR) and ligation-mediated PCR, 233 viral-host junctions mapped across all human chromosomes at random, no difference between tumor and non-tumor tissue was observed, with the exception of fragile sites (P = 0.0070). HBV insertions in close proximity to cancer related genes such as hTERT were found in this study, however overall they were rare events. No direct correlation between chromosome aberrations and the number of HBV integration events was found using a sensitive array-based comparative genomic hybridization (aCGH) assay. However, a positive correlation was observed between the status of several tumor suppressor genes (TP53, RB1, CDNK2A and TP73) and the number of chromosome aberrations (r = 0.6625, P = 0.0003). Examination of the viral genome revealed that 43% of inserts were in the preC/C region and 57% were in the HBV X gene. Strikingly, approximately 24% of the integrations examined had a breakpoint in a short 15 nt viral genome region (1820–1834 nt). As a consequence, all of the confirmed X gene insertions were C-terminal truncated, losing their growth-suppressive domain. However, the same pattern of X gene C-terminal truncation was found in both tumor and non-tumor derived samples. Furthermore, the integrated viral sequences in both groups had a similar low frequency of C1653T, T1753V and A1762T/G1764A mutations. The frequency and patterns of HBV insertions were similar between tumor and their adjacent non-tumor samples indicating that the majority of HBV DNA integration events are not associated with hepatocarcinogenesis.

References

[1]  He J, Gu D, Wu X, Reynolds K, Duan X, et al. (2005) Major causes of death among men and women in China. N Engl J Med 353: 1124–1134.
[2]  Michielsen P, Ho E (2011) Viral hepatitis B and hepatocellular carcinoma. Acta Gastroenterol Belg 74: 4–8.
[3]  Lu FM, Zhuang H (2009) Management of hepatitis B in China. Chin Med J (Engl) 122: 3–4.
[4]  Bonilla GR, Roberts LR (2005) The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 42: 760–777.
[5]  Neuveut C, Wei Y, Buendia MA (2010) Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol 52: 594–604.
[6]  Lei Y, Liu H, Yang Y, Wang X, Ren N, et al. (2012) Interaction of LHBs with C53 promotes hepatocyte mitotic entry: A novel mechanism for HBV-induced hepatocellular carcinoma. Oncol Rep 27: 151–159.
[7]  Wang HC, Huang W, Lai MD, Su IJ (2006) Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci 97: 683–688.
[8]  Ma NF, Lau SH, Hu L, Xie D, Wu J, et al. (2008) COOH-terminal truncated HBV X protein plays key role in hepatocarcinogenesis. Clin Cancer Res 14: 5061–5068.
[9]  Edman JC, Gray P, Valenzuela P, Rall LB, Rutter WJ (1980) Integration of hepatitis B virus sequences and their expression in a human hepatoma cell. Nature 286: 535–538.
[10]  Murakami Y, Saigo K, Takashima H, Minami M, Okanoue T, et al. (2005) Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54: 1162–1168.
[11]  Tamori A, Yamanishi Y, Kawashima S, Kanehisa M, Enomoto M, et al. (2005) Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res 11: 5821–5826.
[12]  Wang Y, Lau SH, Sham JS, Wu MC, Wang T, et al. (2004) Characterization of HBV integrants in 14 hepatocellular carcinomas: association of truncated X gene and hepatocellular carcinogenesis. Oncogene 23: 142–148.
[13]  Paterlini-Brechot P, Saigo K, Murakami Y, Chami M, Gozuacik D, et al. (2003) Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene 22: 3911–3916.
[14]  Zhong S, Chan JY, Yeo W, Tam JS, Johnson PJ (2000) Frequent integration of precore/core mutants of hepatitis B virus in human hepatocellular carcinoma tissues. J Viral Hepat 7: 115–123.
[15]  Feitelson MA, Lee J (2007) Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 252: 157–170.
[16]  Saigo K, Yoshida K, Ikeda R, Sakamoto Y, Murakami Y, et al. (2008) Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum Mutat 29: 703–708.
[17]  Liu S, Zhang H, Gu C, Yin J, He Y, et al. (2009) Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst 101: 1066–1082.
[18]  Minami M, Daimon Y, Mori K, Takashima H, Nakajima T, et al. (2005) Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene 24: 4340–4348.
[19]  Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, et al. (2012) The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res
[20]  Mason WS, Liu C, Aldrich CE, Litwin S, Yeh MM (2010) Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J Virol 84: 8308–8315.
[21]  Horikawa I, Barrett JC (2003) Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis 24: 1167–1176.
[22]  Enrietto PJ, Wyke JA (1983) The pathogenesis of oncogenic avian retroviruses. Adv Cancer Res 39: 269–314.
[23]  Fourel G, Trepo C, Bougueleret L, Henglein B, Ponzetto A, et al. (1990) Frequent activation of N-myc genes by hepadnavirus insertion in woodchuck liver tumours. Nature 347: 294–298.
[24]  Bruni R, D'Ugo E, Giuseppetti R, Argentini C, Rapicetta M (1999) Activation of the N-myc2 oncogene by woodchuck hepatitis virus integration in the linked downstream b3n locus in woodchuck hepatocellular carcinoma. Virology 257: 483–490.
[25]  Jacob JR, Sterczer A, Toshkov IA, Yeager AE, Korba BE, et al. (2004) Integration of woodchuck hepatitis and N-myc rearrangement determine size and histologic grade of hepatic tumors. Hepatology 39: 1008–1016.
[26]  Wilkens L, Bredt M, Flemming P, Kubicka S, Klempnauer J, et al. (2000) Cytogenetic aberrations in primary and recurrent fibrolamellar hepatocellular carcinoma detected by comparative genomic hybridization. Am J Clin Pathol 114: 867–874.
[27]  Nakajima T, Moriguchi M, Mitsumoto Y, Sekoguchi S, Nishikawa T, et al. (2004) Centrosome aberration accompanied with p53 mutation can induce genetic instability in hepatocellular carcinoma. Mod Pathol 17: 722–727.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133