Receptor Associated Protein 80 (RAP80) is a subunit of the BRCA1-A complex and targets BRCA1 to DNA damage sites in response to DNA double strand breaks. Since mutations of BRCA1 are associated with familial ovarian cancers, we screened 26 ovarian cancer-derived cell lines for RAP80 mutations and found that TOV-21G cells harbor a RAP80 mutation (c.1107G >A). This mutation generates a stop codon at Trp369, which deletes the partial AIR region and the C-terminal zinc fingers of RAP80. Interestingly, both the mutant and wild type alleles of RAP80 lose their expression due to promoter hypermethylation, suggesting that TOV-21G is a RAP80-null cell line. In these cells, not only is the BRCA1-A complex disrupted, but the relocation of the remaining subunits in the BRCA1-A complex including BRCA1, CCDC98, NBA1, BRCC36 and BRE is significantly suppressed. Moreover, TOV-21G cells are hypersensitive to ionizing radiation, which is due to the compromised DNA damage repair capacity in these cells. Reconstitution of TOV-21G cells with wild type RAP80 rescues these cellular defects in response to DNA damage. Thus, our results demonstrate that RAP80 is a scaffold protein in the BRCA1-A complex. Identification of TOV-21G as a RAP80 null tumor cell line will be very useful for the study of the molecular mechanism in DNA damage response.
References
[1]
American Cancer Society (2007) Global cancer facts & figures 2007. Atlanta, Ga.: American Cancer Society. 46 p.
[2]
Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, et al. (2010) Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol 221: 49–56.
[3]
Ford D, Easton DF, Stratton M, Narod S, Goldgar D, et al. (1998) Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 62: 676–689.
[4]
King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302: 643–646.
[5]
Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4: 665–676.
[6]
Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108: 171–182.
[7]
Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, et al. (2006) Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20: 34–46.
[8]
Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, et al. (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316: 1194–1198.
[9]
Yu X, Chen J (2004) DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 24: 9478–9486.
[10]
Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, et al. (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105: 149–160.
[11]
Li S, Chen PL, Subramanian T, Chinnadurai G, Tomlinson G, et al. (1999) Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J Biol Chem 274: 11334–11338.
[12]
Wong AK, Ormonde PA, Pero R, Chen Y, Lian L, et al. (1998) Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17: 2279–2285.
[13]
Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273: 25388–25392.
[14]
Wu J, Lu LY, Yu X (2010) The role of BRCA1 in DNA damage response. Protein Cell 1: 117–123.
[15]
Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4: 511–518.
[16]
Feng L, Huang J, Chen J (2009) MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev 23: 719–728.
[17]
Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316: 1202–1205.
[18]
Liu Z, Wu J, Yu X (2007) CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14: 716–720.
[19]
Shao G, Patterson-Fortin J, Messick TE, Feng D, Shanbhag N, et al. (2009) MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev 23: 740–754.
[20]
Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, et al. (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316: 1198–1202.
[21]
Wang B, Hurov K, Hofmann K, Elledge SJ (2009) NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23: 729–739.
[22]
Kim H, Huang J, Chen J (2007) CCDC98 is a BRCA1-BRCT domain-binding protein involved in the DNA damage response. Nat Struct Mol Biol 14: 710–715.
[23]
Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8: 436–443.
[24]
Dansonka-Mieszkowska A, Kluska A, Moes J, Dabrowska M, Nowakowska D, et al. (2010) A novel germline PALB2 deletion in Polish breast and ovarian cancer patients. BMC Med Genet 11: 20.
[25]
De Nicolo A, Tancredi M, Lombardi G, Flemma CC, Barbuti S, et al. (2008) A novel breast cancer-associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res 14: 4672–4680.
[26]
Kato M, Yano K, Matsuo F, Saito H, Katagiri T, et al. (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45: 133–137.
[27]
Pylkas K, Erkko H, Nikkila J, Solyom S, Winqvist R (2008) Analysis of large deletions in BRCA1, BRCA2 and PALB2 genes in Finnish breast and ovarian cancer families. BMC Cancer 8: 146.
[28]
Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, et al. (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43: 1104–1107.
[29]
Rahman N, Seal S, Thompson D, Kelly P, Renwick A, et al. (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39: 165–167.
[30]
Wong MW, Nordfors C, Mossman D, Pecenpetelovska G, Avery-Kiejda KA, et al. (2011) BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 127: 853–859.
[31]
Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, et al. (2006) Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22: 719–729.
[32]
Erkko H, Xia B, Nikkila J, Schleutker J, Syrjakoski K, et al. (2007) A recurrent mutation in PALB2 in Finnish cancer families. Nature 446: 316–319.
[33]
Provencher DM, Lounis H, Champoux L, Tetrault M, Manderson EN, et al. (2000) Characterization of four novel epithelial ovarian cancer cell lines. In Vitro Cell Dev Biol Anim 36: 357–361.
[34]
Akbari MR, Ghadirian P, Robidoux A, Foumani M, Sun Y, et al. (2009) Germline RAP80 mutations and susceptibility to breast cancer. Breast Cancer Res Treat 113: 377–381.
[35]
Nikkila J, Coleman KA, Morrissey D, Pylkas K, Erkko H, et al. (2009) Familial breast cancer screening reveals an alteration in the RAP80 UIM domain that impairs DNA damage response function. Oncogene 28: 1843–1852.
[36]
Luo MP, Gomperts B, Imren S, DeClerck YA, Ito M, et al. (1997) Establishment of long-term in vitro cultures of human ovarian cystadenomas and LMP tumors and examination of their spectrum of expression of matrix-degrading proteinases. Gynecol Oncol 67: 277–284.
[37]
Velicescu M, Yu J, Herbert BS, Shay JW, Granada E, et al. (2003) Aneuploidy and telomere attrition are independent determinants of crisis in SV40-transformed epithelial cells. Cancer Res 63: 5813–5820.
[38]
Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, et al. (1992) High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 89: 3070–3074.
[39]
Buick RN, Pullano R, Trent JM (1985) Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res 45: 3668–3676.
[40]
Rauh-Adelmann C, Lau KM, Sabeti N, Long JP, Mok SC, et al. (2000) Altered expression of BRCA1, BRCA2, and a newly identified BRCA2 exon 12 deletion variant in malignant human ovarian, prostate, and breast cancer cell lines. Mol Carcinog 28: 236–246.
[41]
Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, et al. (2009) Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res 69: 6381–6386.
[42]
Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1: 23–29.