[1] | Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization - The 2-stage model. Biochemistry 29: 4031–4037.
|
[2] | Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, et al. (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433: 377–381.
|
[3] | Baeza-Delgado C, Marti-Renom MA, Mingarro I (accepted) Structure-based statistical analysis of transmembrane segments. Eur Biophys J DOI 10.1007/s00249-012-0813-9.
|
[4] | Martinez-Gil L, Perez-Gil J, Mingarro I (2008) The surfactant peptide KL4 sequence is inserted with a transmembrane orientation into the endoplasmic reticulum membrane. Biophys J 95: L36–38.
|
[5] | Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, et al. (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450: 1026–1030.
|
[6] | Zhou FX, Merianos HJ, Brunger AT, Engelman DM (2001) Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci U S A 98: 2250–2255.
|
[7] | Gratkowski H, Lear JD, DeGrado WF (2001) Polar side chains drive the association of model transmembrane peptides. Proc Natl Acad Sci U S A 98: 880–885.
|
[8] | Hermansson M, von Heijne G (2003) Inter-helical Hydrogen Bond Formation During Membrane Protein Integration into the ER Membrane. Journal of Molecular Biology 334: 803–809.
|
[9] | Chin CN, von Heijne G (2000) Charge pair interactions in a model transmembrane helix in the ER membrane. J Mol Biol 303: 1–5.
|
[10] | DeGrado WF, Gratkowski H, Lear JD (2003) How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. Protein Sci 12: 647–665.
|
[11] | Mackenzie KR (2006) Folding and stability of alpha-helical integral membrane proteins. Chem Rev 106: 1931–1977.
|
[12] | Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM (1992) Sequence specificity in the dimerization of transmembrane α-helices. Biochemistry 31: 12719–12725.
|
[13] | Mingarro I, Whitley P, Lemmon MA, von Heijne G (1996) Ala-insertion scanning mutagenesis of the glycophorin A transmembrane helix. A rapid way to map helix-helix interactions in integral membrane proteins. Protein Sci 5: 1339–1341.
|
[14] | MacKenzie KR, Prestegard JH, Engelman DM (1997) A transmembrane helix dimer: Structure and implications. Science 276: 131–133.
|
[15] | Smith SO, Song D, Shekar S, Groesbeek M, Ziliox M, et al. (2001) Structure of the transmembrane dimer interface of glycophorin A in membrane bilayers. Biochemistry 40: 6553–6558.
|
[16] | Orzaez M, Salgado J, Gimenez-Giner A, Perez-Paya E, Mingarro I (2004) Influence of proline residues in transmembrane helix packing. J Mol Biol 335: 631–640.
|
[17] | Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296: 911–919.
|
[18] | Senes A, Engel DE, DeGrado WF (2004) Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr Opin Struct Biol 14: 465–479.
|
[19] | Cymer F, Veerappan A, Schneider D (2012) Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties. Biochimica et biophysica acta 1818: 963–973.
|
[20] | Jayasinghe S, Hristova K, White SH (2001) MPtopo: A database of membrane protein topology. Protein Sci 10: 455–458.
|
[21] | Illergard K, Kauko A, Elofsson A (2011) Why are polar residues within the membrane core evolutionary conserved? Proteins 79: 79–91.
|
[22] | Wong WC, Maurer-Stroh S, Eisenhaber F (2011) Not all transmembrane helices are born equal: Towards the extension of the sequence homology concept to membrane proteins. Biology direct 6: 57.
|
[23] | Orzaez M, Lukovic D, Abad C, Perez-Paya E, Mingarro I (2005) Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif. FEBS Lett 579: 1633–1638.
|
[24] | Duong MT, Jaszewski TM, Fleming KG, MacKenzie KR (2007) Changes in apparent free energy of helix-helix dimerization in a biological membrane due to point mutations. Journal of molecular biology 371: 422–434.
|
[25] | Herrmann JR, Fuchs A, Panitz JC, Eckert T, Unterreitmeier S, et al. (2010) Ionic interactions promote transmembrane helix-helix association depending on sequence context. Journal of molecular biology 396: 452–461.
|
[26] | Caputo GA, London E (2004) Position and ionization state of Asp in the core of membrane-inserted alpha helices control both the equilibrium between transmembrane and nontransmembrane helix topography and transmembrane helix positioning. Biochemistry 43: 8794–8806.
|
[27] | Tulumello DV, Deber CM (2009) SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 48: 12096–12103.
|
[28] | Monne M, Nilsson I, Johansson M, Elmhed N, von Heijne G (1998) Positively and negatively charged residues have different effects on the position in the membrane of a model transmembrane helix. J Mol Biol 284: 1177–1183.
|
[29] | Garcia-Saez AJ, Mingarro I, Perez-Paya E, Salgado J (2004) Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry 43: 10930–10943.
|
[30] | Gafvelin G, Sakaguchi M, Andersson H, von Heijne G (1997) Topological rules for membrane protein assembly in eukaryotic cells. J Biol Chem 272: 6119–6127.
|
[31] | Vilar M, Sauri A, Monne M, Marcos JF, von Heijne G, et al. (2002) Insertion and topology of a plant viral movement protein in the endoplasmic reticulum membrane. J Biol Chem 277: 23447–23452.
|
[32] | Johansson M, Nilsson I, von Heijne G (1993) Positively charged amino acids placed next to a signal sequence block protein translocation more efficiently in Escherichia coli than in mammalian microsomes. Mol Gen Genet 239: 251–256.
|
[33] | Russ WP, Engelman DM (1999) TOXCAT: a mesure of transmembrane helix association in a biological membrane. Proc Natl Acad Sci USA 96: 863–868.
|
[34] | Kolmar H, Hennecke F, Gotze K, Janzer B, Vogt B, et al. (1995) Membrane insertion of the bacterial signal transduction protein ToxR and requirements of transcription activation studied by modular replacement of different protein substructures. EMBO J 14: 3895–3904.
|
[35] | Langosch D, Brosig B, Kolmar H, Fritz HJ (1996) Dimerization of the glycophorin A transmembrane segment in membranes probed with the ToxR transcription activator. J Mol Biol 263: 525–530.
|
[36] | Martinez-Gil L, Sauri A, Marti-Renom MA, Mingarro I (2011) Membrane protein integration into the ER. FEBS J 278: 3846–3858.
|
[37] | Zhang J, Lazaridis T (2009) Transmembrane helix association affinity can be modulated by flanking and noninterfacial residues. Biophysical journal 96: 4418–4427.
|
[38] | Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26: 680–682.
|
[39] | Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann B-J, et al. (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane α-helices. J Biol Chem 267: 7683–7689.
|
[40] | Orzaez M, Perez-Paya E, Mingarro I (2000) Influence of the C-terminus of the glycophorin A transmembrane fragment on the dimerization process. Protein Sci 9: 1246–1253.
|
[41] | Sulistijo ES, Jaszewski TM, MacKenzie KR (2003) Sequence-specific dimerization of the transmembrane domain of the “BH3-only” protein BNIP3 in membranes and detergent. The Journal of biological chemistry 278: 51950–51956.
|
[42] | Vilar M, Charalampopoulos I, Kenchappa RS, Simi A, Karaca E, et al. (2009) Activation of the p75 neurotrophin receptor through conformational rearrangement of disulphide-linked receptor dimers. Neuron 62: 72–83.
|
[43] | Johnson RM, Rath A, Melnyk RA, Deber CM (2006) Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions. Biochemistry 45: 8507–8515.
|
[44] | Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Research 40: D370–376.
|