[1] | Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8: 1114–1127.
|
[2] | Fukami T, Beaumont HJE, Zhang XX, Rainey PB (2007) Immigration history controls diversification in experimental adaptive radiation. Nature 446: 436–439.
|
[3] | Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, et al. (2007) Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 5: e235.
|
[4] | Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424: 303–306. doi:10.1038/nature01767.
|
[5] | terHorst CP, Miller TE, Levitan DR (2010) Evolution of prey in ecological time reduces the effect size of predators in experimental microcosms. Ecology 91: 629–636.
|
[6] | Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology & Evolution 22: 250–257.
|
[7] | Hanski I (1999) Metapopulation ecology. USA: Oxford Univ Press.
|
[8] | Hanski IA, Gilpin ME (1997) Metapopulation biology: Ecology, genetics, and evolution. 1st ed. Academic Press.
|
[9] | Holyoak M, Leibold MA, Holt RD (2005) Metacommunities: Spatial dynamics and ecological communities. Univ Chicago Press.
|
[10] | Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7: 601–613. doi:10.1111/j.1461-0248.2004.00608.x.
|
[11] | Urban MC, Leibold MA, Amarasekare P, De Meester L, Gomulkiewicz R, et al. (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23: 311–317.
|
[12] | Clobert J, Danchin E, Dhondt AA, Nichols JD eds (2001) Dispersal. USA: Oxford University Press.
|
[13] | Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6: 783–796.
|
[14] | De Meester L, Gómez A, Okamura B, Schwenk K (2002) The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135. doi:10.1016/S1146-609X(02)01145-1.
|
[15] | Etienne R, Wertheim B, Hemerik L, Schneider P, Powell J (2002) The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecol Model 148: 153–168.
|
[16] | France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441: 1139–1143.
|
[17] | Parris KM (2004) Environmental and spatial variables influence the composition of frog assemblages in sub-tropical eastern Australia. Ecography 27: 392–400. doi:10.1111/j.0906-7590.2004.03711.x.
|
[18] | Garant D, Forde S, Hendry A (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Func Ecol 21: 434–443.
|
[19] | Dobzhansky T, Wright S (1947) Genetics of natural populations. XV. Rate of diffusion of a mutant gene through a population of Drosophila pseudoobscura. Genetics 32: 303–324.
|
[20] | Mayr E (1963) Animal Species and Evolution. 1st ed. Belknap Press.
|
[21] | Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17: 183–189. doi:10.1016/S0169-5347(02)02497-7.
|
[22] | Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149: 563.
|
[23] | Johnston JS, Templeton AR (1982) Dispersal and clines in Opuntia breeding Drosophila mercatorum and D. hydei at Kamuela, Hawaii. Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Sydney: Academic Press. pp. 241–256.
|
[24] | Urban M, Skelly D (2006) Evolving metacommunities: Toward an evolutionary perspective on metacommunities. Ecology 87: 1616–1626.
|
[25] | Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, et al. (2008) Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452: 210–214. doi:10.1038/nature06554.
|
[26] | Loeuille N, Leibold M (2008) Evolution in metacommunities: On the relative importance of species sorting and monopolization in structuring communities. Am Nat 171: 788–799. doi:10.1086/587745.
|
[27] | Urban MC, De Meester L (2009) Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. Biol. Sci. Available: http://www.ncbi.nlm.nih.gov/pubmed/19740?878. Accessed 2009 Oct 11.
|
[28] | Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49: 201–207.
|
[29] | Cork J, Purugganan M (2004) The evolution of molecular genetic pathways and networks. BioEssays 26: 479–484. doi:10.1002/bies.20026.
|
[30] | Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101–113. doi:10.1038/nrg1272.
|
[31] | Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139: 1455–1461.
|
[32] | Carter AJR, Hermisson J, Hansen TF (2005) The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor Pop Bio 68: 179–196. doi:10.1016/j.tpb.2005.05.002.
|
[33] | Kimbrell T (2009) Canalization and adaptation in a landscape of sources and sinks. Evol Ecol 6: Available: http://dx.doi.org/10.1007/s10682-009-934?6-9. Accessed 2010 May.
|
[34] | Kimbrell T, Holt RD (2007) Canalization breakdown and evolution in a source-sink system. Am Nat 169: 370–382. doi:10.1086/511314.
|
[35] | Repsilber D, Martinetz T, Bj?rklund M (2009) Adaptive dynamics of regulatory networks: size matters. EURASIP J Bioinfo Sys Bio 2009.
|
[36] | Malcom JW (2011) Smaller, scale-free gene networks increase quantitative trait heritability and result in faster population recovery. PLoS ONE 6: e14645. doi:10.1371/journal.pone.0014645.
|
[37] | Malcom J (In press) Smaller gene networks permit longer persistence in fast-changing environments. PLoS ONE.
|
[38] | Malcom J (In press) Evolution of competitive ability: An adaptation speed vs. accuracy tradeoff rooted in gene network size. PLoS One.
|
[39] | Hansen TF, Carter AJR, Pelabon C (2006) On adaptive accuracy and precision in natural populations. Am Nat 168: 168–181.
|
[40] | Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9: 399–409.
|
[41] | Holyoak M, Loreau M (2006) Reconciling empirical ecology with neutral community models. Ecology 87: 1370–1377.
|
[42] | Chase JM, Leibold MA (2003) Ecological niches: Linking classical and contemporary approaches. University Of Chicago Press.
|
[43] | Hubbell SP (2001) The Unified Neutral Theory of biodiversity and biogeography. Princeton Univ Press. 375 p.
|
[44] | Loreau M (2010) From populations to ecosystems: Theoretical foundations for a new ecological synthesis (MPB-46). Princeton Univ Press. 297 p.
|
[45] | Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416: 427–430.
|
[46] | Gravel D, Guichard F, Loreau M, Mouquet N (2010) Source and sink dynamics in meta-ecosystems. Ecology 91: 2172–2184.
|
[47] | Johnson KH, Vogt KA, Clark HJ, Schmitz OJ, Vogt DJ (1996) Biodiversity and the productivity and stability of ecosystems. Trends Ecol Evol 11: 372–377. doi:10.1016/0169-5347(96)10040-9.
|
[48] | Leibold M (2009) Spatial and metacommunity dynamics in biodiversity. In: Levin S, editor. The Princeton Guide to Ecology. Princeton, , NJ: Princeton Univ Press. pp. 312–319.
|
[49] | Gravel D, Mouquet N, Loreau M, Guichard F (2010) Patch dynamics, persistence, and species coexistence in metaecosystems. Am. Nat 176: 289–302. doi:10.1086/655426.
|
[50] | Nuismer SL, Doebeli M (2004) Genetic correlations and the coevolutionary dynamics of three-species systems. Evolution 58: 1165–1177.
|
[51] | McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140: 1010. doi:10.1086/285453.
|
[52] | Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc Roy Soc B-Bio Sci 272: 2449–2456. doi:10.1098/rspb.2005.3235.
|
[53] | Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev mod phys 74: 47–97.
|
[54] | Frank SA (1999) Population and quantitative genetics of regulatory networks. J Theor Bio 197: 281–294. doi:10.1006/jtbi.1998.0872.
|
[55] | Wilenski U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.
|
[56] | R Development Core Team (2009) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. p. Available: http://www.R-project.org.
|
[57] | Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models. R.D. Irwin.
|
[58] | Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer. 496 p.
|