全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Gene Networks and Metacommunities: Dispersal Differences Can Override Adaptive Advantage

DOI: 10.1371/journal.pone.0021541

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dispersal is an important mechanism contributing to both ecological and evolutionary dynamics. In metapopulation and metacommunity ecology, dispersal enables new patches to be colonized; in evolution, dispersal counter-acts local selection, leading to regional homogenization. Here, I consider a three-patch metacommunity in which two species, each with a limiting quantitative trait underlain by gene networks of 16 to 256 genes, compete with one another and disperse among patches. Incorporating dispersal among heterogeneous patches introduces a tradeoff not observed in single-patch simulations: if the difference between gene network size of the two species is greater than the difference in dispersal ability (e.g., if the ratio of network sizes is larger than the ratio of dispersal abilities), then genetic architecture drives community outcome. However, if the difference in dispersal abilities is greater than gene network differences, then any adaptive advantages afforded by genetic architecture are over-ridden by dispersal. Thus, in addition to the selective pressures imposed by competition that shape the genetic architecture of quantitative traits, dispersal among patches creates an escape that may further alter the effects of different genetic architectures. These results provide a theoretical expectation for what we may observe as the field of ecological genomics develops.

References

[1]  Hairston NG, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8: 1114–1127.
[2]  Fukami T, Beaumont HJE, Zhang XX, Rainey PB (2007) Immigration history controls diversification in experimental adaptive radiation. Nature 446: 436–439.
[3]  Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, et al. (2007) Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biol 5: e235.
[4]  Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424: 303–306. doi:10.1038/nature01767.
[5]  terHorst CP, Miller TE, Levitan DR (2010) Evolution of prey in ecological time reduces the effect size of predators in experimental microcosms. Ecology 91: 629–636.
[6]  Johnson MTJ, Stinchcombe JR (2007) An emerging synthesis between community ecology and evolutionary biology. Trends in Ecology & Evolution 22: 250–257.
[7]  Hanski I (1999) Metapopulation ecology. USA: Oxford Univ Press.
[8]  Hanski IA, Gilpin ME (1997) Metapopulation biology: Ecology, genetics, and evolution. 1st ed. Academic Press.
[9]  Holyoak M, Leibold MA, Holt RD (2005) Metacommunities: Spatial dynamics and ecological communities. Univ Chicago Press.
[10]  Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, et al. (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7: 601–613. doi:10.1111/j.1461-0248.2004.00608.x.
[11]  Urban MC, Leibold MA, Amarasekare P, De Meester L, Gomulkiewicz R, et al. (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23: 311–317.
[12]  Clobert J, Danchin E, Dhondt AA, Nichols JD eds (2001) Dispersal. USA: Oxford University Press.
[13]  Bohonak AJ, Jenkins DG (2003) Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecol Lett 6: 783–796.
[14]  De Meester L, Gómez A, Okamura B, Schwenk K (2002) The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23: 121–135. doi:10.1016/S1146-609X(02)01145-1.
[15]  Etienne R, Wertheim B, Hemerik L, Schneider P, Powell J (2002) The interaction between dispersal, the Allee effect and scramble competition affects population dynamics. Ecol Model 148: 153–168.
[16]  France KE, Duffy JE (2006) Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441: 1139–1143.
[17]  Parris KM (2004) Environmental and spatial variables influence the composition of frog assemblages in sub-tropical eastern Australia. Ecography 27: 392–400. doi:10.1111/j.0906-7590.2004.03711.x.
[18]  Garant D, Forde S, Hendry A (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Func Ecol 21: 434–443.
[19]  Dobzhansky T, Wright S (1947) Genetics of natural populations. XV. Rate of diffusion of a mutant gene through a population of Drosophila pseudoobscura. Genetics 32: 303–324.
[20]  Mayr E (1963) Animal Species and Evolution. 1st ed. Belknap Press.
[21]  Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17: 183–189. doi:10.1016/S0169-5347(02)02497-7.
[22]  Holt RD, Gomulkiewicz R (1997) How does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149: 563.
[23]  Johnston JS, Templeton AR (1982) Dispersal and clines in Opuntia breeding Drosophila mercatorum and D. hydei at Kamuela, Hawaii. Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Sydney: Academic Press. pp. 241–256.
[24]  Urban M, Skelly D (2006) Evolving metacommunities: Toward an evolutionary perspective on metacommunities. Ecology 87: 1616–1626.
[25]  Venail PA, MacLean RC, Bouvier T, Brockhurst MA, Hochberg ME, et al. (2008) Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452: 210–214. doi:10.1038/nature06554.
[26]  Loeuille N, Leibold M (2008) Evolution in metacommunities: On the relative importance of species sorting and monopolization in structuring communities. Am Nat 171: 788–799. doi:10.1086/587745.
[27]  Urban MC, De Meester L (2009) Community monopolization: local adaptation enhances priority effects in an evolving metacommunity. Proc. Biol. Sci. Available: http://www.ncbi.nlm.nih.gov/pubmed/19740?878. Accessed 2009 Oct 11.
[28]  Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49: 201–207.
[29]  Cork J, Purugganan M (2004) The evolution of molecular genetic pathways and networks. BioEssays 26: 479–484. doi:10.1002/bies.20026.
[30]  Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell's functional organization. Nat Rev Genet 5: 101–113. doi:10.1038/nrg1272.
[31]  Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139: 1455–1461.
[32]  Carter AJR, Hermisson J, Hansen TF (2005) The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor Pop Bio 68: 179–196. doi:10.1016/j.tpb.2005.05.002.
[33]  Kimbrell T (2009) Canalization and adaptation in a landscape of sources and sinks. Evol Ecol 6: Available: http://dx.doi.org/10.1007/s10682-009-934?6-9. Accessed 2010 May.
[34]  Kimbrell T, Holt RD (2007) Canalization breakdown and evolution in a source-sink system. Am Nat 169: 370–382. doi:10.1086/511314.
[35]  Repsilber D, Martinetz T, Bj?rklund M (2009) Adaptive dynamics of regulatory networks: size matters. EURASIP J Bioinfo Sys Bio 2009.
[36]  Malcom JW (2011) Smaller, scale-free gene networks increase quantitative trait heritability and result in faster population recovery. PLoS ONE 6: e14645. doi:10.1371/journal.pone.0014645.
[37]  Malcom J (In press) Smaller gene networks permit longer persistence in fast-changing environments. PLoS ONE.
[38]  Malcom J (In press) Evolution of competitive ability: An adaptation speed vs. accuracy tradeoff rooted in gene network size. PLoS One.
[39]  Hansen TF, Carter AJR, Pelabon C (2006) On adaptive accuracy and precision in natural populations. Am Nat 168: 168–181.
[40]  Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9: 399–409.
[41]  Holyoak M, Loreau M (2006) Reconciling empirical ecology with neutral community models. Ecology 87: 1370–1377.
[42]  Chase JM, Leibold MA (2003) Ecological niches: Linking classical and contemporary approaches. University Of Chicago Press.
[43]  Hubbell SP (2001) The Unified Neutral Theory of biodiversity and biogeography. Princeton Univ Press. 375 p.
[44]  Loreau M (2010) From populations to ecosystems: Theoretical foundations for a new ecological synthesis (MPB-46). Princeton Univ Press. 297 p.
[45]  Chase JM, Leibold MA (2002) Spatial scale dictates the productivity–biodiversity relationship. Nature 416: 427–430.
[46]  Gravel D, Guichard F, Loreau M, Mouquet N (2010) Source and sink dynamics in meta-ecosystems. Ecology 91: 2172–2184.
[47]  Johnson KH, Vogt KA, Clark HJ, Schmitz OJ, Vogt DJ (1996) Biodiversity and the productivity and stability of ecosystems. Trends Ecol Evol 11: 372–377. doi:10.1016/0169-5347(96)10040-9.
[48]  Leibold M (2009) Spatial and metacommunity dynamics in biodiversity. In: Levin S, editor. The Princeton Guide to Ecology. Princeton, , NJ: Princeton Univ Press. pp. 312–319.
[49]  Gravel D, Mouquet N, Loreau M, Guichard F (2010) Patch dynamics, persistence, and species coexistence in metaecosystems. Am. Nat 176: 289–302. doi:10.1086/655426.
[50]  Nuismer SL, Doebeli M (2004) Genetic correlations and the coevolutionary dynamics of three-species systems. Evolution 58: 1165–1177.
[51]  McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140: 1010. doi:10.1086/285453.
[52]  Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc Roy Soc B-Bio Sci 272: 2449–2456. doi:10.1098/rspb.2005.3235.
[53]  Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev mod phys 74: 47–97.
[54]  Frank SA (1999) Population and quantitative genetics of regulatory networks. J Theor Bio 197: 281–294. doi:10.1006/jtbi.1998.0872.
[55]  Wilenski U (1999) NetLogo. http://ccl.northwestern.edu/netlogo/ Center for Connected Learning and Computer-Based Modeling, Northwestern University. Evanston, IL.
[56]  R Development Core Team (2009) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. p. Available: http://www.R-project.org.
[57]  Neter J, Wasserman W, Kutner MH (1985) Applied linear statistical models. R.D. Irwin.
[58]  Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer. 496 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133