全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Control of Kaposi's Sarcoma-Associated Herpesvirus Reactivation Induced by Multiple Signals

DOI: 10.1371/journal.pone.0020998

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ability to control cellular functions can bring about many developments in basic biological research and its applications. The presence of multiple signals, internal as well as externally imposed, introduces several challenges for controlling cellular functions. Additionally the lack of clear understanding of the cellular signaling network limits our ability to infer the responses to a number of signals. This work investigates the control of Kaposi's sarcoma-associated herpesvirus reactivation upon treatment with a combination of multiple signals. We utilize mathematical model-based as well as experiment-based approaches to achieve the desired goals of maximizing virus reactivation. The results show that appropriately selected control signals can induce virus lytic gene expression about ten folds higher than a single drug; these results were validated by comparing the results of the two approaches, and experimentally using multiple assays. Additionally, we have quantitatively analyzed potential interactions between the used combinations of drugs. Some of these interactions were consistent with existing literature, and new interactions emerged and warrant further studies. The work presents a general method that can be used to quantitatively and systematically study multi-signal induced responses. It enables optimization of combinations to achieve desired responses. It also allows identifying critical nodes mediating the multi-signal induced responses. The concept and the approach used in this work will be directly applicable to other diseases such as AIDS and cancer.

References

[1]  Chang Y, Cesarman E, Pessin M, Lee F, Culpepper J, et al. (1994) Identification of herpesvirus-like dna sequences in aids-associated kaposi's sarcoma. Science 266: 1865–1869.
[2]  Roizman B, Pellet P, Knipe D, Howley P (2001) Fields Virology. Lippincott Williams & Wilkins.
[3]  Sun R, Lin S, Gradoville L, Yuan Y, Zhu F, et al. (1998) A viral gene that activates lytic cycle expression of kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 95: 10866–10871.
[4]  Sun R, Lin S, Staskus K, Gradoville L, Grogan E, et al. (1999) Kinetics of kaposi's sarcomaassociated herpesvirus gene expression. J Virol 73: 2232–42.
[5]  Deng H, Liang Y, Sun R (2007) Regulation of kshv lytic gene expression. Curr Top Microbiol Immunol 312: 157–183.
[6]  Song M, Brown H, Wu T, Sun R (2001) Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/kaposi's sarcoma-associated herpesvirus. J Virol 75: 3129–3140.
[7]  Song M, Li X, Brown H, Sun R (2002) Characterization of interactions between rta and the promoter of polyadenylated nuclear rna in kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 76: 5000–13.
[8]  Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in kaposi sarcoma. Proc Natl Acad Sci U S A 93: 6641–6.
[9]  Davis D, Singer K, Reynolds I, Haque M, Yarchoan R (2007) Hypoxia enhances the phosphorylation and cytotoxicity of ganciclovir and zidovudine in kaposi's sarcoma-associated herpesvirus infected cells. Cancer Res 67: 7003–10.
[10]  Israel B, Kenney S (2003) Virally targeted therapies for ebv-associated malignancies. Oncogene 22: 5122–30.
[11]  Chen C, Chang Y, Ryan P, Linscott M, McGarrity G, et al. (1995) Effect of herpes simplex virus thymidine kinase expression levels on ganciclovir-mediated cytotoxicity and the “bystander effect”. Hum Gene Ther 6: 1467–76.
[12]  Fick J, Barker F, Dazin P, Westphale E, Beyer E, et al. (1995) The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro. Proc Natl Acad Sci U S A 92: 11071–5.
[13]  Brown H, McBride W, Zack J, Sun R (2005) Prostratin and bortezomib are novel inducers of latent kaposi's sarcoma-associated herpesvirus. Antivir Ther 10: 745–751.
[14]  Chang M, Brown H, Collado-Hidalgo A, Arevalo J, Galic Z, et al. (2005) beta-adrenoreceptors reactivate kaposi's sarcoma-associated herpesvirus lytic replication via pka-dependent control of viral rta. J Virol 79: 13538–13547.
[15]  Shaw R, Arbiser J, Offermann M (2000) Valproic acid induces human herpesvirus 8 lytic gene expression in bcbl-1 cells. AIDS 14: 899–902.
[16]  Zoeteweij J, Rinderknecht A, Davis D, Yarchoan R, Blauvelt A (2002) Minimal reactivation of kaposi's sarcoma-associated herpesvirus by corticosteroids in latently infected b cell lines. J Med Virol 66: 378–383.
[17]  Chauhan D, Auclair D, Robinson E, Hideshima T, Li G, et al. (2002) Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 21: 1346–1358.
[18]  Sun R, Lin S, Gradoville L, Miller G (1996) Polyadenylylated nuclear rna encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 93: 11883–11888.
[19]  Yu F, Harada J, Brown H, Deng H, Song M, et al. (2007) Systematic identification of cellular signals reactivating kaposi sarcoma-associated herpesvirus. PLoS Pathogens 3: e44.
[20]  Renne R, Zhong W, Herndier B, McGrath M, Abbey N, et al. (1996) Lytic growth of kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2: 342–6.
[21]  zur Hausen H, Bornkamm G, Schmidt R, Hecker E (1979) Tumor initiators and promoters in the induction of epstein-barr virus. Proc Natl Acad Sci U S A 76: 782–5.
[22]  Montgomery DC, Peck EA, Vining GG (2006) Introduction To Linear Regression Analysis. Wiley-Interscience. 672 p.
[23]  Kutner MH (2005) Applied linear statistical models. McGraw-Hill/Irwin. 1396 p.
[24]  Geladi P, Kowalski B (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta.
[25]  Gupta M, Homma N, Jin L (2003) Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory.
[26]  Haykin S (1999) Neural Networks A Comprehensive Foundation.
[27]  Snyman J (2005) (2005) Practical Mathematical Optimization An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms.
[28]  Goldberg D (1989) Genetic Algorithms in Search, Optimization and Machine Learning. 372 p. 534133.
[29]  Boer PD, Kroese D, Mannor S, Rubinstein R (2005) A tutorial on the cross-entropy method. Annals of Operations Research 134: 19–67.
[30]  Kroese D, Porotsky S, Rubinstein R (2006) The cross-entropy method for continuous multiextremal optimization. Methodology and Computing in Applied Probability 8: 383–407.
[31]  Rubenstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability 2: 127–190.
[32]  Al-Shyoukh I (2007) Online-Information-Based Learning and Decision Making Under Uncertainty. Ph.D. thesis, University of California Los Angeles.
[33]  Calzolari D, Bruschi S, Coquin L, Schofield J, Feala J, et al. (2008) Search algorithms as a framework for the optimization of drug combinations. PLoS Comput Biol 4: e1000249.
[34]  Sun CP, Usui T, Yu F, Al-Shyoukh I, Shamma J, et al. (2009) Integrative systems control approach for reactivating kaposis sarcoma-associated herpesvirus (kshv) with combinatory drugs. Integrative Biology 1: 123–130.
[35]  Wong P, Yu F, Shahangian A, Cheng G, Sun R, et al. (2008) Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proc Natl Acad Sci U S A 105: 5105–10.
[36]  Yu F (2007) Systematic investigation of multiple inducers regulating KSHV reactivation. Ph.D. thesis, University of California Los Angeles.
[37]  (2009) Supplemental webpage for this manuscript showing five drug effects on the reactivation of kshv. Available: http://labs.pharmacology.ucla.edu/sunlab?/kshvweb/drug_interactions_supplemental_?webpage.html. URL http://labs.pharmacology.ucla.edu/sunlab?/sunlabhome.htm.
[38]  Hofmann M, Gatu C, Kontoghiorghes E (2007) Efficient algorithms for computing the best subset regression models for large-scale . . . . Computational Statistics and Data Analysis.
[39]  Al-Shyoukh I, Yu F, Feng J, Yan K, Dubinett S, et al. (2011) Systematic quantitative characterization of cellular responses induced by multiple signals. Accepted for Publication in BMC Systems Biology.
[40]  Dowd D, Ryerse J, MacDonald P, Miesfeld R, Kamradt M (1997) Crosstalk during ca2+-, camp-, and glucocorticoid-induced gene expression in lymphocytes. Mol Cell Endocrinol 128: 29–37.
[41]  Tai T, Wong D (2003) Protein kinase a and protein kinase c signaling pathway interaction in phenylethanolamine n-methyltransferase gene regulation. J Neurochem 85: 816–29.
[42]  Hideshima T, Richardson P, Chauhan D, Palombella V, Elliott P, et al. (2001) The proteasome inhibitor ps-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61: 3071–6.
[43]  Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4: 349–60.
[44]  Adams J, Kauffman M (2004) Development of the proteasome inhibitor velcade (bortezomib). Cancer Invest 22: 304–11.
[45]  Krappmann D, Patke A, Heissmeyer V, Scheidereit C (2001) B-cell receptor- and phorbol esterinduced nf-kappab and c-jun n-terminal kinase activation in b cells requires novel protein kinase c's. Mol Cell Biol 21: 6640–50.
[46]  Williams S, Chen L, Kwon H, Fenard D, Bisgrove D, et al. (2004) Prostratin antagonizes hiv latency by activating nf-kappab. J Biol Chem 279: 42008–17.
[47]  Krug L, Moser J, Dickerson S, Speck S (2007) Inhibition of nf-kappab activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 3: e11.
[48]  Auphan N, DiDonato J, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of nf-kappa b activity through induction of i kappa b synthesis. Science 270: 286–90.
[49]  Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, et al. (2001) Modulation of t-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappab. Blood 98: 743–53.
[50]  Rabbi M, al Harthi L, Saifuddin M, Roebuck K (1998) The camp-dependent protein kinase a and protein kinase c-beta pathways synergistically interact to activate hiv-1 transcription in latently infected cells of monocyte/macrophage lineage. Virology 245: 257–69.
[51]  Hermann-Kleiter N, Thuille N, Pfeifhofer C, Gruber T, Schafer M, et al. (2006) Pkctheta and pka are antagonistic partners in the nf-at transactivation pathway of primary mouse cd3+ t lymphocytes. Blood 107: 4841–8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133