[1] | O'Conner TD, Mundy NI (2009) Genotype-phenotype associations: substitution models to detect evolutionary associations between phenotypic variables and genotypic evolutionary rate. Bioinformatics 25: i94–i100.
|
[2] | Lanfear R, Welch JJ, Bromham L (2010) Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol Evol 25: 495–503.
|
[3] | Kathirithamby J (1989) Review of the order Strepsiptera. Syst Entomol 14: 41–62.
|
[4] | Kathirithamby J (2009) Host-parasitoid associations in Strepsiptera. Annu Rev Entomol 54: 227–249.
|
[5] | Kathirithamby J, Ross LD, Johnston JS (2003) Masquerading as self? endoparasitic Strepsiptera (Insecta) enclose themselves in host-derived epithelial bag. P Natl Acad Sci USA 100: 7655–7659.
|
[6] | Gillespie JJ, McKenna CH, Yoder MJ, Gutell RR, Johnston JS, et al. (2005) Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera). Insect Mol Biol 14: 625–643.
|
[7] | Pohl H, Beutel RG (2007) The evolution of Strepsiptera. Zoology 111: 318–338.
|
[8] | McMahon DP, Hayward A, Kathirithamby J (2009) The mitochondrial genome of the ‘twisted-wing parasite’ Mengenilla australiensis: a comparative study. BMC Genomics 10: 603.
|
[9] | Hunter MS, Woolley JB (2001) Evolution and behavioural ecology of heteronomous aphelinid parasitoids. Annu Rev Entomol 46: 251–90.
|
[10] | Hayward A, McMahon DP, Kathirithamby J (2011) Cryptic diversity and host specificity in a parasitoid where the sexes utilize hosts from separate orders. Mol Ecol 20: 1508–1528.
|
[11] | Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos Trans R Soc London Ser B 337: 1–20.
|
[12] | Kinzelbach RK (1978) Strepsiptera. Die Tierwelt Deutschlands 65: 166.
|
[13] | Poulin R, Morand S (2004) Parasite biodiversity. Washington DC: Smithsonian Institution Press.
|
[14] | Poulin R, Keeney DB (2008) Host specificity under molecular and experimental scrutiny. Trends Parasitol 24: 24–28.
|
[15] | Dorus S, Evans PD, Wyckoff GJ, Choi SS, Lahn BT (2004) Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity. Nat Genet 36: 1326–1329.
|
[16] | Nadeau NJ, Burke T, Mundy NI (2007) Evolution of an avian pigmentation gene correlates with a measure of sexual selection. Proc R Soc B Biol Sci 255: 37–45.
|
[17] | Ramm SA, Oliver PL, Ponting CP, Stockley P, Emes RD (2008) Sexual selection and the adaptive evolution of mammalian ejaculate proteins. Mol Biol Evol 25: 207–219.
|
[18] | Ahrens D, Ribera I (2009) Inferring speciation modes in a clade of Iberian chafers from rates of morphological evolution in different character systems. BMC Evol Biol 9: 234.
|
[19] | Kim H, Lee W, Lee S (2010) Morphometric relationship, phylogenetic correlation, and character evolution in the species-rich genus Aphis (Hemiptera: Aphididae). PLoS ONE 5: e11608.
|
[20] | Hardman M, Hardman LM (2008) The relative importance of body size and paleoclimatic change as explanatory variables influencing lineage diversification rate: an evolutionary analysis of bullhead catfishes (Siluriformes: Ictaluridae). Syst Biol 57: 116–130.
|
[21] | Omland KE (1997) Correlated rates of molecular and morphological evolution. Evolution 51: 1381–1393.
|
[22] | Bromham L, Woolfit M, Lee MSY, Rambaut A (2002) Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution 56: 1921–1930.
|
[23] | Ekman S, Andersen HL, Wedin M (2007) The limitations of ancestral state reconstruction and the evolution of the Ascus in the Lecanorales (lichenized Ascomycota). Syst Biol 57: 141–156.
|
[24] | Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46: 1–68.
|
[25] | Huelsenbeck JP (1998) Systematic bias in phylogenetic analysis: is the Strepsiptera problem solved? Syst Biol 47: 519–537.
|
[26] | Huelsenbeck JP (2001) A Bayesian perspective of the Strepsiptera problem. Tidjschr Ent 144: 165–178.
|
[27] | Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, et al. (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biology 7: 34.
|
[28] | Longhorn SJ, Pohl H, Vogler AP (2010) Ribosomal protein genes of holometabolous insects reject the Halteria, instead revealing a close affinity of Strepsiptera with Coloeptera. Mol Phylogenet Evol 55: 846–859.
|
[29] | Mckenna DD, Farrell BD (2010) 9-genes reinforce the phylogeny of Holometabola and yield alternative views on the phylogenetic placement of Strepsiptera. PLoS ONE 5: e11887.
|
[30] | Ishiwata K, Saski G, Owaga J, Miyata T, Su ZH (2010) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol. (doi:10.1016/j.ympev.2010.11.001).
|
[31] | Bromham L (2009) Why do species vary in their rate of molecular evolution? Biol Lett 5: 401–404.
|
[32] | Dowton M, Austin AD (1995) Increased genetic diversity in mitochondrial genes is correlated with the evolution of parasitism in the Hymenoptera. J Mol Evol 41: 958–965.
|
[33] | Duff RJ, Nickrent DL (1997) Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J Mol Evol 45: 631–639.
|
[34] | Pohl H, Beutel RG (2005) The phylogeny of Strepsiptera (Hexapoda). Cladistics 21: 328–374.
|
[35] | Brower AVZ (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. P Natl Acad Sci USA 91: 6491–6495.
|
[36] | Farrell BD (2001) Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Mol Phylogenet Evol 18: 46–478.
|
[37] | Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, et al. (2007) The delayed rise of present-day mammals. Nature 446: 507–512.
|
[38] | Ricklefs RE, Losos JB, Townsend TM (2007) Evolutionary diversification of clades of squamate reptiles. J Evol Biol 20: 1751–1762.
|
[39] | Silvestri F (1943) Studi sugli ‘Strepsiptera’ Insecta. III. Descrizione e biologia di 6 specie italiane di Mengenilla. Boll Lab Zool Gen Agric Portici 32: 197–282.
|
[40] | Pohl H, Beutel RG (2004) Fine structure of adhesive devices of Strepsiptera (Insecta). Arthropod Struct Dev 33: 31–43.
|
[41] | Moore BR, Donoghue MJ (2007) Correlates of diversification in the plant clade Dipsacales: geographic movement and evolutionary innovation. Am Nat 170: S28–S55.
|
[42] | Venditti C, Meade A, Pagel M (2009) Phylogenies reveal new interpretation of speciation and the red queen. Nature 463: 349–352.
|
[43] | Welch JJ, Bininda-Emonds ORP, Bromham L (2008) Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol 8: 53.
|
[44] | Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23: 318–26.
|
[45] | Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20: 320–327.
|
[46] | Ho SYW (2009) An examination of phylogenetic models of substitution rate variation among lineages. Biol Lett 5: 421–424.
|
[47] | Crowson RA (1960) The phylogeny of Coleoptera. Ann Rev Entomol 5: 111–134.
|
[48] | Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino acid replacement process. Mol Biol Evol 21: 1095–109.
|
[49] | Bravo F, Pohl H, Silvo-Neto A, Beutel RG (2009) Bahiaxenidae, a “living fossil” and a new family of Strepsiptera (Hexapoda) discovered in Brazil. Cladistics 25: 1–10.
|
[50] | Castro LR, Dowton M (2005) The position of the Hymenoptera within the Holometabola as inferred from the mitochondrial genome of Perga condei (Hymenoptera: Symphyta: Pergidae). Mol Phylogenet Evol 34: 469–479.
|
[51] | Castro LR, Dowton M (2006) Mitochondrial genomes in the Hymenoptera and their utility as phylogenetic markers. Syst Entomol 32: 60–69.
|
[52] | Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
|
[53] | Kjer KM, Baldridge GD, Fallon AM (1994) Mosquito large subunit ribosomal RNA: simultaneous alignment of primary and secondary structure. Biochim Biophys Acta 1217: 147–155.
|
[54] | Gillespie JJ (2004) Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules. Mol Phylogenet Evol 33: 936–943.
|
[55] | Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415.
|
[56] | Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
|
[57] | Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577.
|
[58] | Huelsenbeck J, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755.
|
[59] | Ronquist F, Huelsenbeck JP (2003) MrBayes 3, Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
|
[60] | Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
|
[61] | Drummond A, Strimmer K (2001) PAL: An object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 17: 662–663.
|
[62] | Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.
|
[63] | Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.
|
[64] | Stomatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
|
[65] | Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Heredity 92: 371–373.
|
[66] | Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26: 1–7.
|
[67] | Strimmer K, von Haeseler A (1997) Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci USA 94: 6815–6819.
|
[68] | Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.
|
[69] | Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42: 459–468.
|
[70] | Abascal F, Posada D, Zardoya R (2007) MtArt: A new model of amino acid replacement for Arthropoda. Mol Biol Evol 24: 1–5.
|
[71] | Le SQ, Gascuel O (2008) LG: an improved, general amino-acid replacement matrix. Mol Biol Evol 25: 1307–20.
|
[72] | Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from http://beast.bio.ed.ac.uk/Tracer.
|
[73] | Stomatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.
|
[74] | Rambaut A, Drummond AJ (2007) FigTree v1.0, Available from http://tree.bio.ed.ac.uk/FigTree.
|
[75] | Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7: 214.
|
[76] | Yang Z (2007) PAML 4, a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
|
[77] | Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4: e88.
|
[78] | Shapiro B, Rambaut A, Drummond AJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23: 7–9.
|
[79] | Robinson-Rechavi M, Huchon D (2000) RRTree: Relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16: 296–297.
|
[80] | Nee S, Barraclough TG, Harvey PH (1996) Temporal changes in biodiversity: detecting patterns and identifying causes. In: Gaston KJ, editor. Biodiversity: a biology of numbers and differences. Oxford: Blackwell Science. pp. 230–252.
|
[81] | Rambaut A, Harvey PH, Nee S (1997) End-Epi: an application for inferring phylogenies and population dynamic processes from molecular sequences. Comput Appl Biosci 13: 303–306.
|
[82] | Rabosky DL (2006) Likelihood methods for inferring temporal shifts in diversification rates. Evolution 60: 1152–1164.
|
[83] | Chan KM, Moore BR (2005) SYMMETREE: whole-tree analysis of differential diversification rates. Bioinformatics 21: 1709–1710.
|
[84] | Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53: 673–684.
|
[85] | Kathirithamby J, Hayward A, McMahon DP, Ferreira RS, Andreazze R, et al. (2010) Conspecifics of a heterotrophic heteronomous species of Strepsiptera (Insecta) are matched by molecular characterization. Syst Entomol 35: 234–242.
|
[86] | Pohl H, Kinzelbach KJ (2001) First record of a female stylopid (Strepsiptera: ?Myrecolacidae) parasite of prionomyrmecine ant (Hymenoptera: Formicidae) in Baltic amber. Insect Syst Evol 32: 143–146.
|
[87] | Maddison WP, Maddison DR (2006) Mesquite, a modular system for evolutionary analysis, Version 1.12. Available at: http://mesquiteproject.org.
|
[88] | Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5: 164–166.
|
[89] | Soria-Carrasco V, Talavera G, Idea J, Castresana J (2007) The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics 23: 2954–2956.
|