全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Common Functional Correlates of Head-Strike Behavior in the Pachycephalosaur Stegoceras validum (Ornithischia, Dinosauria) and Combative Artiodactyls

DOI: 10.1371/journal.pone.0021422

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Pachycephalosaurs were bipedal herbivorous dinosaurs with bony domes on their heads, suggestive of head-butting as seen in bighorn sheep and musk oxen. Previous biomechanical studies indicate potential for pachycephalosaur head-butting, but bone histology appears to contradict the behavior in young and old individuals. Comparing pachycephalosaurs with fighting artiodactyls tests for common correlates of head-butting in their cranial structure and mechanics. Methods/Principal Findings Computed tomographic (CT) scans and physical sectioning revealed internal cranial structure of ten artiodactyls and pachycephalosaurs Stegoceras validum and Prenocephale prenes. Finite element analyses (FEA), incorporating bone and keratin tissue types, determined cranial stress and strain from simulated head impacts. Recursive partition analysis quantified strengths of correlation between functional morphology and actual or hypothesized behavior. Strong head-strike correlates include a dome-like cephalic morphology, neurovascular canals exiting onto the cranium surface, large neck muscle attachments, and dense cortical bone above a sparse cancellous layer in line with the force of impact. The head-butting duiker Cephalophus leucogaster is the closest morphological analog to Stegoceras, with a smaller yet similarly rounded dome. Crania of the duiker, pachycephalosaurs, and bighorn sheep Ovis canadensis share stratification of thick cortical and cancellous layers. Stegoceras, Cephalophus, and musk ox crania experience lower stress and higher safety factors for a given impact force than giraffe, pronghorn, or the non-combative llama. Conclusions/Significance Anatomy, biomechanics, and statistical correlation suggest that some pachycephalosaurs were as competent at head-to-head impacts as extant analogs displaying such combat. Large-scale comparisons and recursive partitioning can greatly refine inference of behavioral capability for fossil animals.

References

[1]  Farke AA (2008) Frontal sinuses and head-butting in goats: a finite element analysis. The Journal of Experimental Biology 211: 3085–3094.
[2]  Hieronymus TL, Witmer LM, Tanke DH, Currie PJ (2009) The facial integument of centrosaurine ceratopsids: morphological and histological correlates of novel skin structures. The Anatomical Record 292: 1370–1396.
[3]  Carpenter K (1997) Agonistic behavior in pachycephalosaurs: a new look at head-butting behavior. Contributions to Geology, University of Wyoming 32: 19–25.
[4]  Geist V (1976) Mountain Sheep. 399 p. A Study in Behavior and Evolution.
[5]  Farke AA (2010) Evolution and functional morphology of the frontal sinuses in Bovidae (Mammalia: Artiodactyla), and implications for the evolution of cranial pneumaticity. Zoological Journal of the Linnean Society 159: 988–1014.
[6]  Estes RD (1991) 660 p. Behavior Guide to African Mammals.
[7]  Goodwin MB, Horner JR (2004) Cranial histology of pachycephalosaurs (Ornithischia: Marginocephalia) reveals transitory structures inconsistent with head-butting behavior. Paleobiology 30: 253–267.
[8]  Snively E, Cox A (2008) Structural mechanics of pachycephalosaur crania permitted head-butting behavior. Palaeontologica Electronica 11(1):3A: 1–17.
[9]  Sues H-D (1978) Functional morphology of the dome in pachycephalosaurid dinosaurs. Neues Jahrbuch für Geologie und Pal?ontologie Monatshefte 8: 459–472.
[10]  Maity P, Tekalur SA (2011) Finite element analysis of ramming in Ovis canadensis. Journal of Biomechanical Engineering 133: 021009-1. 9 pp.
[11]  Bubenik AB (1990) Epigenetical, morphological, physiological, and behavioral aspects of evolution of horns, pronghorns, and antlers. In: Bubenik GA, Bubenik AB, editors. Horns, Pronghorns, and Antlers. pp. 3–113.562 p.
[12]  Krieg H (1944) Der Sch?del einer Giraffe. Naturwissenschaften 32: 148–156.
[13]  Dagg AI, Foster JB (1981) 232 p. The Giraffe, Its Biology, Behavior, and Ecology.
[14]  Kitchen DW, Bromley PT Geist V, Walthers D, editors. (1974) Agonistic behavior of territorial pronghorn bucks. The Behavior of Ungulates and Its Relation to Management, Volume I. International Union for Conservation of Nature and Natural Reseources 365–381. Publication 24.
[15]  Cowin SC (2001) Bone Mechanics. 980 p.
[16]  Vahey JW, Lewis JL, Vanderby R (1987) Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. Journal of Biomechanics 20: 29–33.
[17]  Kuhn JL, Goldstein SA, Ciarelli MJ, Mathews LS (1989) The limits of canine trabecular bone as a model for human: a biomechanical study. Journal of Biomechanics 22: 95–107.
[18]  Kitchener AC (1988) An analysis of forces of fighting of the blackbuck (Antilope cervicapra) and the bighorn sheep (Ovis canadensis) and the mechanical design of the horns of bovids. Journal of Zoology, London 214: 1–20.
[19]  Barghusen HR (1975) A review of fighting adaptations in dinocephalians (Reptilia, Therapsida). Paleobiology 1: 295–311.
[20]  Padian K, Horner JR (2010) The evolution of ‘bizarre structures’ in dinosaurs: biomechanics, sexual selection, social selection or species recognition? Journal of Zoology 283: 3–17.
[21]  Ivins BJ, Crowley JS, Johnson J, Warden DL, Schwab KA (2008) Traumatic brain injury risk while parachuting: comparison of the personnel armor system for ground troops helmet and the advanced combat helmet. Military Medicine 173: 1168–1172.
[22]  Mills NJ (2010) Critical evaluation of the SHARP motorcycle helmet rating. International Journal of Crashworthiness 15: 331–342.
[23]  Mills NJ, Gilchrist A (2006) Bicycle helmet design. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications 220: 167–180.
[24]  Arbour VM, Snively E (2009) Finite element analysis of ankylosaurid dinosaur tail club impacts. The Anatomical Record 292: 1412–1426.
[25]  Bell PR, Snively E, Shychoski L (2009) A comparison of the jaw mechanics in hadrosaurid and ceratopsid dinosaurs using finite element analysis. The Anatomical Record 292: 1339–1351.
[26]  Jasinoski SC, Rayfield EJ, Chinsamy A (2009) Comparative feeding biomechanics of Lystrosaurus and the generalized dicynodont Oudenodon. The Anatomical Record 292: 862–874.
[27]  Hellmich C, Kober C, Erdmann B (2008) Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Annals of Biomedical Engineering 36: 108–122.
[28]  Katz JL, Yoon HS, Watchel EF, McMahon TA (1984) The effects of remodeling on the elastic properties of bone. Calcified Tissue International 36: S31–S36.
[29]  Kitchener AC (1992) The evolution and mechanical design of horns and antlers. In: Rayner JMV, Wooton RJ, editors. Biomechanics in Evolution. pp. 229–253.287 p.
[30]  Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC (1990) The fabric dependence of the orthotropic elastic constants of cancellous bone. Journal of Biomechanics 23: 549–561.
[31]  McHenry CR, Wroe S, Clausen PD, Moreno K, Cunningham E (2007) Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences 41: 16010–16015.
[32]  Maryánska T, Osmólska H (1974) Pachycephalosauria, a new suborder of ornithischian dinosaurs. Acta Palaeontologica Polonica 30: 45–102.
[33]  Tsuihiji T (2005) Homologies of the transversospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151–178.
[34]  Snively E, Russell AP (2007) Functional morphology of neck musculature in the Tyrannosauridae (Dinosauria, Theropoda as determined via a hierarchical inferential approach. Zoological Journal of the Linnean Society 151: 759–808.
[35]  Dumont ER, Grosse IR, Slater G (2009) Requirements for comparing the performance of finite element models of biological structures. Journal of Theoretical Biology 256: 96–103.
[36]  Jaslow CR, Biewener AA (1995) Strain patterns in the horncores, cranial bones and sutures of goats (Capra hircus) during impact loading. Journal of Zoology 235: 193–210.
[37]  Bryant HN, Russell AP (1992) The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405–418.
[38]  Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, editor. Functional Morphology in Vertebrate Paleontology. pp. 19–33.277 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133