全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2011 

Selective BRAFV600E Inhibitor PLX4720, Requires TRAIL Assistance to Overcome Oncogenic PIK3CA Resistance

DOI: 10.1371/journal.pone.0021632

Full-Text   Cite this paper   Add to My Lib

Abstract:

Documented sensitivity of melanoma cells to PLX4720, a selective BRAFV600E inhibitor, is based on the presence of mutant BRAFV600E alone, while wt-BRAF or mutated KRAS result in cell proliferation. In colon cancer appearance of oncogenic alterations is complex , since BRAF, like KRAS mutations, tend to co-exist with those in PIK3CA and mutated PI3K has been shown to interfere with the successful application of MEK inhibitors. When PLX4720 was used to treat colon tumours, results were not encouraging and herein we attempt to understand the cause of this recorded resistance and discover rational therapeutic combinations to resensitize oncogene driven tumours to apoptosis. Treatment of two genetically different BRAFV600E mutant colon cancer cell lines with PLX4720 conferred complete resistance to cell death. Even though p-MAPK/ ERK kinase (MEK) suppression was achieved, TRAIL, an apoptosis inducing agent, was used synergistically in order to achieve cell death by apoptosis in RKOBRAFV600E/PIK3CAH1047 cells. In contrast, for the same level of apoptosis in HT29BRAFV600E/PIK3CAP449T cells, TRAIL was combined with 17-AAG, an Hsp90 inhibitor. For cells where PLX4720 was completely ineffective, 17-AAG was alternatively used to target mutant BRAFV600E. TRAIL dependence on the constitutive activation of BRAFV600E is emphasised through the overexpression of BRAFV600E in the permissive genetic background of colon adenocarcinoma Caco-2 cells. Pharmacological suppression of the PI3K pathway further enhances the synergistic effect between TRAIL and PLX4720 in RKO cells, indicating the presence of PIK3CAMT as the inhibitory factor. Another rational combination includes 17-AAG synergism with TRAIL in a BRAFV600E mutant dependent manner to commit cells to apoptosis, through DR5 and the amplification of the apoptotic pathway. We have successfully utilised combinations of two chemically unrelated BRAFV600E inhibitors in combination with TRAIL in a BRAFV600E mutated background and provided insight for new anti-cancer strategies where the activated PI3KCA mutation oncogene should be suppressed.

References

[1]  Oikonomou E, Makrodouli E, Evagelidou M, Joyce T, Probert L, et al. (2009) BRAF(V600E) efficient transformation and induction of microsatellite instability versus KRAS(G12V) induction of senescence markers in human colon cancer cells. Neoplasia 11: 1116–1131.
[2]  Li WQ, Kawakami K, Ruszkiewicz A, Bennett G, Moore J, et al. (2006) BRAF mutations are associated with distinctive clinical, pathological and molecular features of colorectal cancer independently of microsatellite instability status. Mol Cancer. 5. 2 p. 1476-4598-5-2 [pii];10.1186/1476-4598-5-2 [doi].
[3]  Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 26. : 1324–1337. 1210220 [pii];10.1038/sj.onc.1210220 [doi].
[4]  Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature. 432. : 307–315. nature03098 [pii];10.1038/nature03098 [doi].
[5]  Ziegler U, Groscurth P (2004) Morphological features of cell death. News Physiol Sci 19: 124–128.
[6]  Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat. 4. : 303–313. 10.1054/drup.2001.0213 [doi];S1368-7646(01)90213-4 [pii].
[7]  Fang JY, Richardson BC (2005) The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6. : 322–327. S1470-2045(05)70168-6 [pii];10.1016/S1470-2045(05)70168-6 [doi].
[8]  Schwartsmann G, Di Leone LP, Dal PF, Roesler R (2005) MAPK pathway activation in colorectal cancer: a therapeutic opportunity for GRP receptor antagonists. Lancet Oncol. 6. : 444–445. S1470-2045(05)70226-6 [pii];10.1016/S1470-2045(05)70226-6 [doi].
[9]  Tominaga K, Higuchi K, Sasaki E, Suto R, Watanabe T, et al. (2004) Correlation of MAP kinases with COX-2 induction differs between MKN45 and HT29 cells. Aliment Pharmacol Ther 20 Suppl. 1. : 143–150. 10.1111/j.1365-2036.2004.01986.x [doi];APT1986 [pii].
[10]  Michl P, Downward J (2005) Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Z Gastroenterol. 43. : 1133–1139. 10.1055/s-2005-858638 [doi].
[11]  Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, et al. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 5. : 157–163. 10.1038/5517 [doi].
[12]  MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett. 139. : 89–97. S0378427402004228 [pii].
[13]  Kischkel FC, Lawrence DA, Tinel A, LeBlanc H, Virmani A, et al. (2001) Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem. 276. : 46639–46646. 10.1074/jbc.M105102200 [doi];M105102200 [pii].
[14]  Suliman A, Lam A, Datta R, Srivastava RK (2001) Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene. 20. : 2122–2133. 10.1038/sj.onc.1204282 [doi].
[15]  Hague A, Hicks DJ, Hasan F, Smartt H, Cohen GM, et al. (2005) Increased sensitivity to TRAIL-induced apoptosis occurs during the adenoma to carcinoma transition of colorectal carcinogenesis. Br J Cancer. 92. : 736–742. 6602387 [pii];10.1038/sj.bjc.6602387 [doi].
[16]  Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE (2001) MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem. 276. : 16484–16490. 10.1074/jbc.M010384200 [doi];M010384200 [pii].
[17]  Drosopoulos KG, Roberts ML, Cermak L, Sasazuki T, Shirasawa S, et al. (2005) Transformation by oncogenic RAS sensitizes human colon cells to TRAIL-induced apoptosis by up-regulating death receptor 4 and death receptor 5 through a MEK-dependent pathway. J Biol Chem. 280. : 22856–22867. M412483200 [pii];10.1074/jbc.M412483200 [doi].
[18]  Tsai J, Lee JT, Wang W, Zhang J, Cho H, et al. (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A. 105. : 3041–3046. 0711741105 [pii];10.1073/pnas.0711741105 [doi].
[19]  Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 464. : 427–430. nature08902 [pii];10.1038/nature08902 [doi].
[20]  Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, et al. (2010) Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 140. : 209–221. S0092-8674(09)01626-2 [pii];10.1016/j.cell.2009.12.040 [doi].
[21]  Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, et al. (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 464. : 431–435. nature08833 [pii];10.1038/nature08833 [doi].
[22]  Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, et al. (2006) V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci U S A. 103. : 57–62. 0609973103 [pii];10.1073/pnas.0609973103 [doi].
[23]  Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, et al. (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem. 277. : 39858–39866. 10.1074/jbc.M206322200 [doi];M206322200 [pii].
[24]  Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, et al. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 425. : 407–410. 10.1038/nature01913 [doi];nature01913 [pii].
[25]  Roberts ML, Drosopoulos KG, Vasileiou I, Stricker M, Taoufik E, et al. (2006) Microarray analysis of the differential transformation mediated by Kirsten and Harvey Ras oncogenes in a human colorectal adenocarcinoma cell line. Int J Cancer. 118. : 616–627. 10.1002/ijc.21386 [doi].
[26]  Oikonomou E, Kothonidis K, Taoufik E, Probert E, Zografos G, et al. (2007) Newly established tumourigenic primary human colon cancer cell lines are sensitive to TRAIL-induced apoptosis in vitro and in vivo. Br J Cancer. 97. : 73–84. 6603835 [pii];10.1038/sj.bjc.6603835 [doi].
[27]  da Rocha DS, Friedlos F, Light Y, Springer C, Workman P, et al. (2005) Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 65. : 10686–10691. 65/23/10686 [pii];10.1158/0008-5472.CAN-05-2632 [doi].
[28]  LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 11. : 32–50. S1368-7646(07)00076-3 [pii];10.1016/j.drup.2007.11.003 [doi].
[29]  Qiao L, Studer E, Leach K, McKinstry R, Gupta S, et al. (2001) Deoxycholic acid (DCA) causes ligand-independent activation of epidermal growth factor receptor (EGFR) and FAS receptor in primary hepatocytes: inhibition of EGFR/mitogen-activated protein kinase-signaling module enhances DCA-induced apoptosis. Mol Biol Cell 12: 2629–2645.
[30]  Kopetz S, Desai J, Chan E, Hecht JR, O'Dwyer PJ, et al. (2010) PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol. 28.
[31]  Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, et al. (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature. 439. : 358–362. nature04304 [pii];10.1038/nature04304 [doi].
[32]  She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, et al. (2008) Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS One. 3. e3065 p. 10.1371/journal.pone.0003065 [doi].
[33]  Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, et al. (2010) PIK3CA Mutation Uncouples Tumor Growth and Cyclin D1 Regulation from MEK/ERK and Mutant KRAS Signaling. Cancer Res. 70. : 6804–6814. 0008-5472.CAN-10-0409 [pii];10.1158/0008-5472.CAN-10-0409 [doi].
[34]  Vaculova A, Hofmanova J, Soucek K, Kozubik A (2006) Different modulation of TRAIL-induced apoptosis by inhibition of pro-survival pathways in TRAIL-sensitive and TRAIL-resistant colon cancer cells. FEBS Lett. 580. : 6565–6569. S0014-5793(06)01312-3 [pii];10.1016/j.febslet.2006.11.004 [doi].
[35]  Wee S, Jagani Z, Xiang KX, Loo A, Dorsch M, et al. (2009) PI3K pathway activation mediates resistance to MEK inhibitors in KRAS mutant cancers. Cancer Res. 69. : 4286–4293. 0008-5472.CAN-08-4765 [pii];10.1158/0008-5472.CAN-08-4765 [doi].
[36]  Rychahou PG, Murillo CA, Evers BM (2005) Targeted RNA interference of PI3K pathway components sensitizes colon cancer cells to TNF-related apoptosis-inducing ligand (TRAIL). Surgery. 138. : 391–397. S0039-6060(05)00268-0 [pii];10.1016/j.surg.2005.05.012 [doi].
[37]  Opel D, Naumann I, Schneider M, Bertele D, Debatin KM, et al. (2011) Targeting aberrant PI3K/Akt activation by PI103 restores sensitivity to TRAIL-induced apoptosis in neuroblastoma. Clin Cancer Res. pp. 1078–0432. CCR-10-2530 [pii];10.1158/1078-0432.CCR-10-2530 [doi].
[38]  Vasilevskaya IA, O'Dwyer PJ (2005) 17-Allylamino-17-demethoxygeldanamycin overcomes TRAIL resistance in colon cancer cell lines. Biochem Pharmacol. 70. : 580–589. S0006-2952(05)00349-7 [pii];10.1016/j.bcp.2005.05.018 [doi].
[39]  Siegelin MD, Habel A, Gaiser T (2009) 17-AAG sensitized malignant glioma cells to death-receptor mediated apoptosis. Neurobiol Dis. 33. : 243–249. S0969-9961(08)00260-X [pii];10.1016/j.nbd.2008.10.005 [doi].
[40]  Wertz IE, Dixit VM (2010) Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ. 17. : 14–24. cdd2009168 [pii];10.1038/cdd.2009.168 [doi].
[41]  Park WS, Lee JH, Shin MS, Park JY, Kim HS, et al. (2001) Inactivating mutations of KILLER/DR5 gene in gastric cancers. Gastroenterology. 121. : 1219–1225. S0016508501611478 [pii].
[42]  Jin Z, McDonald ER , Dicker DT, El-Deiry WS (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. J Biol Chem. 279. : 35829–35839. 10.1074/jbc.M405538200 [doi];M405538200 [pii].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133