全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Alterations in Bone and Erythropoiesis in Hemolytic Anemia: Comparative Study in Bled, Phenylhydrazine-Treated and Plasmodium-Infected Mice

DOI: 10.1371/journal.pone.0046101

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sustained erythropoiesis and concurrent bone marrow hyperplasia are proposed to be responsible for low bone mass density (BMD) in chronic hemolytic pathologies. As impaired erythropoiesis is also frequent in these conditions, we hypothesized that free heme may alter marrow and bone physiology in these disorders. Bone status and bone marrow erythropoiesis were studied in mice with hemolytic anemia (HA) induced by phenylhydrazine (PHZ) or Plasmodium infection and in bled mice. All treatments resulted in lower hemoglobin concentrations, enhanced erythropoiesis in the spleen and reticulocytosis. The anemia was severe in mice with acute hemolysis, which also had elevated levels of free heme and ROS. No major changes in cellularity and erythroid cell numbers occurred in the bone marrow of bled mice, which generated higher numbers of erythroid blast forming units (BFU-E) in response to erythropoietin. In contrast, low numbers of bone marrow erythroid precursors and BFU-E and low concentrations of bone remodelling markers were measured in mice with HA, which also had blunted osteoclastogenesis, in opposition to its enhancement in bled mice. The alterations in bone metabolism were accompanied by reduced trabecular bone volume, enhanced trabecular spacing and lower trabecular numbers in mice with HA. Taken together our data suggests that hemolysis exerts distinct effects to bleeding in the marrow and bone and may contribute to osteoporosis through a mechanism independent of the erythropoietic stress.

References

[1]  Faber T, Yoon D, White S (2002) Fourier analysis reveals increased trabecular spacing in sickle cell anemia. J Dent Res 81: 214–218.
[2]  Voskaridou E, Stoupa E, Antoniadou L, Premetis E, Konstantopoulos K, et al. (2006) Osteoporosis and osteosclerosis in sickle cell/beta-thalassemia: the role of the RANKL/osteoprotegerin axis. Haematologica 91: 813–816.
[3]  Gurevitch O, Khitrin S, Valitov A, Slavin S (2007) Osteoporosis of hematologic etiology. Exp Hematol 35: 128–136.
[4]  Walkley CR (2011) Erythropoiesis, anemia and the bone marrow microenvironment. Int J Hematol 93: 10–13.
[5]  Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, et al. (2008) Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood 112: 875–885.
[6]  Wu CJ, Krishnamurti L, Kutok JL, Biernacki M, Rogers S, et al. (2005) Evidence for ineffective erythropoiesis in severe sickle cell disease. Blood 106: 3639–3645.
[7]  Padate B, Bain BJ, de la Fuente J (2011) Ineffective hemopoietic in beta thalassemia major visualised. Am J Hematol 86: 372.
[8]  Melchiori LGS, Rivella S (2010) β-Thalassemia: HiJAKing Ineffective Erythropoiesis and Iron Overload. Adv Hematol doi:10.1155/2010/938640.
[9]  Haidar R, Mhaidli H, Taher AT (2010) Paraspinal extramedullary hematopoiesis in patients with thalassemia intermedia. Eur Spine J 19: 871–878.
[10]  Ileri T, Azik F, Ertem M, Uysal Z, Gozdasoglu S (2009) Extramedullary hematopoiesis with spinal cord compression in a child with thalassemia intermedia. J Pediatr Hematol Oncol 31: 681–683.
[11]  Skordis N, Toumba M (2011) Bone disease in thalassaemia major: recent advances in pathogenesis and clinical aspects. Pediatr Endocrinol Rev 8 Suppl 2: 300–306.
[12]  Haidar R, Musallam KM, Taher AT (2010) Bone disease and skeletal complications in patients with beta thalassemia major. Bone 48: 425–432.
[13]  Voskaridou E, Kyrtsonis MC, Terpos E, Skordili M, Theodoropoulos I, et al. (2001) Bone resorption is increased in young adults with thalassaemia major. Br J Haematol 112: 36–41.
[14]  Nielsen M, Moller H, Moestrup S (2010) Hemoglobin and heme scavenger receptors. Antioxid Redox Signal 12: 261–273.
[15]  Jeney V, Balla J, Yachie A, Varga Z, Vercellotti G, et al. (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100: 879–887.
[16]  Gutteridge J, Smith A (1988) Antioxidant protection by haemopexin of heme-stimulate lipid peroxidation. Biochem J 256: 861–865.
[17]  Phumala N, Porasuphatana S, Unchern S, Pootrakul P, Fucharoen S, et al. (2003) Hemin: a possible cause of oxidative stress in blood circulation of beta-thalassemia/hemoglobin E disease. Free Radic Res 37: 129–135.
[18]  Fasola F, Adedapo K, Anetor J, Kuti M (2007) Total Antioxidants Status and Some Hematological Values in Sickle Cell Disease Patients in Steady State. Natl Med Assoc 99: 891–894.
[19]  Balla J, Balla G, Jeney V, Kakuk G, Jacob H, et al. (2000) Ferriporphyrins and endothelium: a 2-edged swordpromotion of oxidation and induction of cytoprotectants. Blood 95: 3442–3450.
[20]  Raggatt L, Partridge N (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285: 25103–25108.
[21]  Hofbauer L, Kühne C, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. J Musculoskelet Neuronal Interact 4: 268–275.
[22]  Mackie E (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Bochem Cell Biol 35: 1301–1305.
[23]  Isidro M, Ruano B (2010) Bone disease in diabetes. Curr Diabetes Rev 6: 144–155.
[24]  Crepaldi G, Maggi S (2009) Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest 32: 2–5.
[25]  McLean R (2009) Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep 7: 134–139.
[26]  Lin T, Tang C, Hung S, Liu S, Lin Y, et al. (2010) Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J cell Physiol 222: 757–768.
[27]  Barbagallo I, Vanella A, Peterson SJ, Kim DH, Tibullo D, et al. (2010) Overexpression of heme oxygenase-1 increases human osteoblast stem cell differentiation. J Bone Miner Metab 28: 276–288.
[28]  Zwerina J, Tzima S, Hayer S, Redlich K, Hoffmann O, et al. (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19: 2011–2013.
[29]  Lamikanra A, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, et al. (2007) Malarial anemia: of mice and men. Blood 110: 18–28.
[30]  Chang K, Tam M, Stevenson M (2004) Inappropriately low reticulocytosis in severe malarial anemia correlates with suppression in the development of late erythroid precursors. Blood 103: 3727–3735.
[31]  Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, et al. (2011) Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 7: 1427–1442.
[32]  Helleberg M, Goka BQ, Akanmori BD, Obeng-Adjei G, Rodriques O, et al. (2005) Bone marrow suppression and severe anaemia associated with persistent Plasmodium falciparum infection in African children with microscopically undetectable parasitaemia. Malar J 4: 56.
[33]  Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, et al. (2007) Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat med 13: 703–710.
[34]  Berger J (2007) Phenylhydrazine haematotoxicity. J Appl Biomed 7 5: 125–130.127.
[35]  Maines M, Veltman J (1984) Phenylhydrazine-mediated induction of haem oxygenase activity in rat liver and kidney and development of hyperbilirubinaemia. Inhibition by zinc-protoporphyrin. Biochem J 217: 409–417.
[36]  Clemens M, Remmer HWH (1984) Phenylhydrazine-induced lipid-peroxidation of red-blood-cells invitro and invivo. Biochem Pharmacol 33.
[37]  Turner AS (2001) Animal models of osteoporosis–necessity and limitations. Eur Cell Mater 1: 66–81.
[38]  Erben RG (1997) Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45: 307–313.
[39]  Valverde-Franco G, Liu H, Davidson D, Chai S, Valderrama-Carvajal H, et al. (2004) Defective bone mineralization and osteopenia in young adult FGFR3?/? mice. Hum Mol Genet 13: 271–284.
[40]  Falk J (1965) Porphyrins and metalloporphyrins. Their General, Physical and Coordination Chemistry and Laboratory Methods. Amsterdam-London-New YorkElsevier Publishing Company 1964.
[41]  Russell E, Bernstein S (1966) Blood and Blood Formation. In: Biology of the Laboratory Mouse; The Staff of the Jackson Laboratory, Dover Publications, Inc, New York.
[42]  Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in human. Toxicol Lett 157: 175–188.
[43]  Muller-Eberhard U, Javid J, Liem HH, Hanstein A, Hanna M (1968) Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood 32: 811–815.
[44]  Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, et al. (2007) Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int 18: 681–685.
[45]  Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, et al. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12: 657–664.
[46]  Lamikanra AA, Theron M, Kooij TW, Roberts DJ (2009) Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS One 4: e8446.
[47]  Skorokhod OA, Caione L, Marrocco T, Migliardi G, Barrera V, et al. (2010) Inhibition of erythropoiesis in malaria anemia: role of hemozoin and hemozoin-generated 4-hydroxynonenal. Blood 116: 4328–4337.
[48]  Bozzini CE, Barrio Rendo ME, Devoto FC, Epper CE (1970) Studies on medullary and extramedullary erythropoiesis in the adult mouse. Am J Physiol 219: 724–728.
[49]  Kurtzhals JA, Rodrigues O, Addae M, Commey JO, Nkrumah FK, et al. (1997) Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria. Br J Haematol 97: 169–174.
[50]  Singbrant S, Russell MR, Jovic T, Liddicoat B, Izon DJ, et al. (2011) Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment. Blood 117: 5631–5642.
[51]  Thongchote K, Svasti S, Sa-ardrit M, Krishnamra N, Fucharoen S, et al. (2011) Impaired bone formation and osteopenia in heterozygous beta(IVSII-654) knockin thalassemic mice. Histochem Cell Biol 136: 47–56.
[52]  Nakamura M, Yagi H, Endo Y, Kosugi H, Ishi T, et al. (1999) A time kinetic study of the effect of aminobisphosphonate on murine haemopoiesis. Br J Haematol 107: 779–790.
[53]  Lisa Giuliani A, Graldi G, Veronesi M, Lorenzini F, Gandini G, et al. (2007) Potentiation of erythroid abnormalities following macrophage depletion in aged rats. Eur J Haematol 78: 72–81.
[54]  Zwerina JTS, Hayer S, Redlich K, Hoffmann O, Hanslik-Schnabel B, et al. (2005) Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone resorption. FASEB J 19: 2011–2013.
[55]  Perisano C, Marzetti E, Spinelli MS, Calla CA, Graci C, et al. (2012) Physiopathology of Bone Modifications in beta-Thalassemia. Anemia 2012: 320737.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133